Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 4313-4339 
    ISSN: 0029-5981
    Keywords: finite element ; stress modes ; classification ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A classification method is presented to classify stress modes in assumed stress fields of hybrid finite element based on the eigenvalue examination and the concept of natural deformation modes. It is assumed that there only exist m (=n-r) natural deformation modes in a hybrid finite element which has n degrees of freedom and r rigid-body modes. For a hybrid element, stress modes in various assumed stress fields proposed by different researchers can be classified into m stress mode groups corresponding to m natural deformation modes and a zero-energy stress mode group corresponding to rigid-body modes by the m natural deformation modes. It is proved that if the flexibility matrix [H] is a diagonal matrix, the classification of stress modes is unique. Each stress mode group, except the zero-energy stress mode group, contains many stress modes that are interchangeable in an assumed stress field and do not cause any kinematic deformation modes in the element. A necessary and sufficient condition for avoiding kinematic deformation modes in a hybrid element is also presented. By means of the m classified stress mode groups and the necessary and sufficient condition, assumed stress fields with the minimum number of stress modes can be constructed and the resulting elements are free from kinematic deformation modes. Moreover, an assumed stress field can be constructed according to the problem to be solved. As examples, 2-D, 4-node plane element and 3-D, 8-node solid element are discussed. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...