Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • computer simulation quasi-harmonic approximation  (1)
Material
Years
Keywords
  • 1
    ISSN: 1573-2746
    Keywords: Free energy ; grain boundaries in silicon ; thermodynamic properties ; computer simulation quasi-harmonic approximation ; anharmonicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A critical assessment is given of the quasi-harmonic approximation, and various approximations to the quasi-harmonic approximation, with regard to predicting the free energy and atomic structure of grain boundaries in silicon at elevated temperatures. The quasi-harmonic results are compared with those obtained by molecular dynamics and thermodynamic integration. It is found that the quasi-harmonic approximation yields accurate excess free energies and atomic structures of grain boundaries at 1,000 K. The anharmonic contribution to the free energy that is absent in the quasi-harmonic contribution is virtually the same at a grain boundary in Si and in the perfect crystal. The second-moment and Einstein approximations to the full quasi-harmonic theory yield unreliable free energies, but reasonably accurate atomic structures. However, excess free energies are quite well described by the Einstein model. It is concluded that the quasi-harmonic approximation works remarkably well in silicon. The simplest approximations to the phonon density of states lead to unreliable results for the free energy, but cancellation of errors occurs to a large extent when excess free energies are computed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...