Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 39 (1993), S. 317-352 
    ISSN: 1573-4889
    Keywords: corrosion ; Fe-Nb-Al alloys ; (Fe, Al)xNb2S4 ; Nb3S4 ; Al2O3
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of eight Fe-Nb-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S atmospheres. The corrosion kinetics followed the parabolic rate law for all alloys at all temperatures. The corrosion rates were reduced with increasing Nb content for Fe-x Nb -3Al alloys, the most pronounced reduction occurred as the Nb content increased from 30 to 40 wt.%. The corrosion rate of Fe-30Nb decreased by six orders of magnitude at 700°C and by five orders of magnitude at 800°C or above by the addition of 10 wt.% aluminum. The scales formed on low-Al alloys (≤3 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with Al dissolved near the outer-/inner-layer interface) and an inner complex layer of FexNb2S4(FeNb2S4 or FeNb3S6), FeS, Nb3S4 (only detected for Nb contents of 30 wt.% or higher) and uncorroded Fe2Nb. No oxides were detected on the low-Al alloys after corrosion at any temperature. Platinum markers were found to be located at the interface between the inner and outer scales for the low-Al alloys, suggesting that the outer scale grew by the outward transport of cations (Fe and Al) and the inner scale grew by the inward transport of sulfur. The scales formed on high-Al alloys (≥5 wt.% Al) were complex, consisting primarily of Nb3S4, Al2O3 and (Fe, Al)xNb2S4, and minor amounts of (Fe, Al)S and uncorroded intermetallics (FeAl and Fe2Nb). The formation of Nb3S4 and Al2O3 blocked the transport of iron through the inner scale, resulting in the significant reduction of the corrosion rates.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 41 (1994), S. 115-138 
    ISSN: 1573-4889
    Keywords: corrosion ; Al2O3 ; Co−Nb−Al ; Nb3S4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Co−15 at.% Nb alloys containing up to 15 at.% Al were corroded in gaseous H2−H2O−H2S mixtures over the temperature range of 600–900°C. The corrosion kinetics followed the parabolic rate law at all temperatures. Corrosion resistance improved with increasing Al content except at 900°C. Duplex scales formed on alloys consisting of an outer layer of cobalt sulfide and a heterophasic inner layer. A small amount of Al2O3 was found only on Co−15Nb−15Al. Contrary to what formed in Co−Nb binary alloys, neither NbS2 nor NbO2 were found in the inner layer of all alloys, but Nb3S4 did form. The absence of NbS2 and NbO2 is due to the formation of stable Al2O3 and Al2S3 that effectively blocked the inward diffusion of oxygen and sulfur, respectively, and to the reduction of activity of Nb by Al additions in the alloys. Intercalation of ions in the empty hexagonal channels of Nb3S4 is associated with the blockage of the transport of cobalt. An unknown phase (possibly Al0.5NbS2) was detected. Alloys corroded at 900°C were abnormally fast and formed a scale containing CoNb3S6 and Co. Pt markers were found at the interface between the inner and outer layers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 40 (1993), S. 155-177 
    ISSN: 1573-4889
    Keywords: sulfidation ; corrosion ; Al2O3 ; Co-Mo-Al alloys ; Al0.55Mo2S4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of Co-15 at.% Mo alloys containing up to 20at.% Al in gaseous H 2 -H 2 O-H 2 S mixtures was studied over the temperature range of 600–900°C. The corrosion kinetics of all alloys followed the parabolic rate law over the temperature range of interest. Corrosion resistance increased with increasing aluminum content. Complex scales formed on the alloys, consisting of an outer layer of cobalt sulfide and a heterophasic inner layer. Al 2 O 3 formed only at high temperatures in alloys having aluminum additions of 15at.% or more. The absence of Al 2 O 3 in some cases is due to the small volume fraction of the intermetallic phase CoAl in the alloys and the nature of the slow growth rate of Al 2 O 3.Improvement in corrosion resistance is attributed to the presence of a ternary sulfide, Al 0.55 Mo 2 S 4,and Al 2 O 3 in the inner layer.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...