Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: acid soil ; crop residues ; pearl millet ; Pennisetum glaucum L. ; phosphorus uptake ; root growth ; VA mycorrhiza
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of long-term (1983–1988) applications of crop residues (millet straw, 2–4 t ha-1 yr−1) and/or mineral fertilizer (30 kg N, 13 kg P and 25 kg K ha-1 yr-1) on uptake of phosphorus (P) and other nutrients, root growth and mycorrhizal colonization of pearl millet (Pennisetum glaucum L.) was examined for two seasons (1987 and 1988) on an acid sandy soil in Niger. Treatments of the long-term field experiment were: control (−CR−F), mineral fertilizer only (−CR+F), crop residues only (+CR−F), and crop residues plus mineral fertilizer (+CR+F). In both years, total P uptake was similar for +CR−F and −CR+F treatments (1.6−3.5 kg P ha-1), although available soil P concentration (Bray I P) was considerably lower in +CR−F (3.2 mg P kg-1 soil) than in −CR+F (7.4) soil. In the treatments with mineral fertilizers (−CR+F; +CR+F), crop residues increased available soil P concentrations (Bray I P) from 7.4 to 8.9 mg kg-1 soil, while total P uptake increased from 3.6 to 10.6 kg P ha-1. In 1987 (with 450 mm of rainfall), leaf P concentrations of 30-day-old millet plants were in the deficiency range, but highest in the +CR+F treatment. In 1988 (699 mm), leaf P concentrations were distinctly higher, and again highest in the +CR+F treatment. In the treatments without crop residues (−CR−F; −CR+F), potassium (K) concentrations in the leaves indicated K deficiency, while application of crop residues (+CR−F; +CR+F) substantially raised leaf K concentrations and total K uptake. Leaf concentrations of calcium (Ca) and magnesium (Mg) were hardly affected by the different treatments. In the topsoil (0–30 cm), root length density of millet plants was greater for +CR+F (6.5 cm cm-3) than for +CR−F (4.5 cm cm-3) and −CR+F (4.2 cm cm-3) treatments. Below 30 cm soil depth, root length density of all treatments declined rapidly from about 0.6 cm cm-3 (30–60 cm soil depth) to 0.2 cm cm-3 (120–180 cm soil depth). During the period of high uptake rates of P (42–80 DAP), root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi was low in 1987 (15–20%), but distinctly higher in 1988 (55–60%). Higher P uptake of +CR+F plants was related to a greater total root length in 0–30 cm and also to a higher P uptake rate per unit root length (P influx). Beneficial effects of crop residues on P uptake were primarily attributed to higher P mobility in the soil due to decreased concentrations of exchangeable Al, and enhancement of root growth. In contrast, the beneficial effect of crop residues on K uptake was caused by direct K supply with the millet straw.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: Al complexation ; Al tolerance ; crop residues ; Pennisetum glaucum ; P mobilization ; soil solution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a long-term field experiment millet straw application (+CR) increased soil pH and base saturation and strongly improved pearl millet (Pennisetum glaucum L.) growth on acid sandy soils. Aluminum (Al) toxicity may be responsible for poor millet growth in plots without crop residues (−CR). Laboratory experiments were conducted to verify this assumption. The concentrations of labile Al (8-hydroxyquinoline, 15 sec) in equilibrium soil solutions of top soil samples from field plots were 14.0 and 0.6 μM in unfertilized samples of −CR and +CR soil, respectively. The corresponding values for labile Al in fertilized (NPK) samples were 51.8 and 11.0 μM, respectively. A short-term (14 days) incubation of −CR soil with ground millet straw (0.1% w/w) increased soil solution pH and decreased total and labile Al in the soil solution by more than 44%. In a water-culture experiment with increasing concentrations of Al (0–60 μM) pearl millet proved to be very Al-tolerant compared to cowpea, peanut and soybean. A short-term (12 days) pot experiment with the incubated soil showed that root growth of pearl millet is not restricted by Al toxicity in the acid soils from Niger, but that after millet straw incubation root growth is considerably enhanced. Phosphorus (P) concentration in the soil solution was about three times higher in +CR (1.75 μM) than in −CR (0.52 μM) top soil. Since P is the most growth-limiting nutrient in those soils, the beneficial effect of crop residues on pearl millet is likely due to improvement of P nutrition by both increase in P mobility in the soil and enhancement of root growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...