Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 42 (1998), S. 258-265 
    ISSN: 0021-9304
    Keywords: bone bonding ; bioactive ceramic ; demineralized bone gelatin ; osteoinduction ; bone graft ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: To determine how to encourage inductive osteogenesis on bioactive ceramics and accelerate the bonding of implants to the surrounding bone, we studied the role of autolyzed antigen-extracted allogeneic bone gelatin (AAAG) in bone bonding to bioactive ceramic implants in rabbit tibiae. Smooth-surfaced plates (15 × 10 × 2 mm) of apatite and wollastonite containing glass-ceramic were implanted into the proximal metaphyses of tibiae, with AAAG packed into the medullary cavity in one limb but not in the contralateral limb, which served as a paired control. After 2, 4, 8, 16, and 25 weeks, bone bonding and bone formation at the bone/implant interfaces were evaluated by a detaching test and undecalcified histological examination. The tensile failure load increased from 2 to 25 weeks for both groups. The failure load of the AAAG-treated group was significantly greater than that of the control group at every stage. Histologically, the AAAG-treated specimens showed active new bone formation in the medullary cavity and extensive bonding between the implant and bone at early periods. The percentage of bony covering in the AAAG-treated group was significantly higher than that of the controls at all intervals except at 25 weeks. The results of this study suggest that the addition of osteoinductive AAAG to a bioactive implant may significantly accelerate bone apposition to the implant and improve the bonding process at the interface, which would help to establish an earlier and stronger bonding between the implants and the surrounding bone. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 42, 258-265, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...