Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1985-1989  (3)
  • Regeneration  (2)
  • disorder  (1)
Materialart
Erscheinungszeitraum
Jahr
  • 1
    ISSN: 1432-1106
    Schlagwort(e): Retinotectal projection ; Regeneration ; Topography ; Goldfish
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary The topographic precision of the regenerating retinotectal projection of the goldfish was studied between 18 and 524 days (at 20° C) after optic nerve cut, using retrograde transport of wheatgerm agglutinin conjugated to horseradish peroxidase (WGA-HRP) from one of two standardized tectal injection sites. All labelled ganglion cells in each flat-mounted retina were plotted individually, and their degree of dispersion was assessed by a statistical method based on distance to nearest neighbour. Labelled cells in normal fish were clustered tightly, covering on average only 1.3% of the retina. Early in regeneration (18–28 days) they were widely dispersed, covering up to 75.2%, and they did not begin to form recognizable clusters at appropriate sites until about 35 days after nerve cut. Between 18 and 70 days, the proportion of retina covered by labelled cells fell dramatically, halving about every 14 days. Between 70 and 524 days, no further reduction could be demonstrated: overall, clusters remained significantly larger than normal, though a few individual retinae were virtually normal. Several others, labelled from similar single injections between 56 and 524 days after nerve cut, showed pairs of cell clusters; a sign that persistent errors in topography are common. The very wide initial scatter of labelled cells reflects a striking lack of ‘goal-directedness’ in regenerative axon growth. Extensive branching in the optic nerve, tract and tectum, for which there is already evidence, must contribute to this. Though uptake of some WGA-HRP by non-synaptic growth cones cannot be ruled out, other evidence for mislocated functional synapses at early stages encourages us to favour ‘trial and error’ synapse formation as the likely basis of map refinement.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Experimental brain research 70 (1988), S. 109-116 
    ISSN: 1432-1106
    Schlagwort(e): Retinotectal projection ; Regeneration ; Correlated activity ; Sensitive period ; Goldfish
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary When the severed optic nerve of a goldfish regenerates, the restored retinotectal projection is at first only grossly topographic. Refinement occurs later, by a mechanism that is thought to depend on correlation in the electrical activity of neighbouring retinal ganglion cells because it can be blocked by exposure to tetrodotoxin or diffuse stroboscopic (strobe) light. To study the sensitivity of retinotectal map refinement to strobe light at different periods during regeneration, four equivalent groups of goldfish with severed right optic nerves and ablated right lenses were interchanged, at 21 day intervals, between strobe (S) and diurnal (D) light to generate four different exposure sequences. After 84 days, a localized iontophoretic injection of WGA-HRP was made into each left tectum to label retinal ganglion cells with terminal arbors at the injection site, and the degree of clustering of the labelled cells was estimated statistically to assess map refinement. Retinae exposed to the sequences SDDS, SSDD or DSSD were broadly similar to each other and to those seen previously after exposure for similar total periods to diurnal light, constant light or strobe light with the lens in place. However, those kept in diurnal light for the first 42 days and in strobe light thereafter (DDSS) revealed significantly less refinement, equivalent to that seen previously after just 42–44 days in diurnal light. Thus diffuse strobe light itself neither sharpens nor unsharpens the regenerated map: its immediate effect seems only to be the indefinite postponement of whatever refinement would otherwise have occurred. Refinement can still occur when fish are returned from strobe to diurnal light late in regeneration, and may then be faster even than in fish kept in diurnal light throughout.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Journal of statistical physics 57 (1989), S. 89-139 
    ISSN: 1572-9613
    Schlagwort(e): Stable laws ; disorder ; polymer
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract The problem of directed polymers on disordered hierarchical and hypercubic lattices is considered. For the hierarchical lattices the problem can be reduced to the study of the stable laws for combining random variables in a nonlinear way. We present the results of numerical simulations of two hierarchical lattices, finding evidence of a phase transition in one case. For a limiting case we extend the perturbation theory developed by Derrida and Griffiths to nonzero temperature and to higher order and use this approach to calculate thermal and geometrical properties (overlaps) of the model. In this limit we obtain an interpolation formula, allowing one to obtain the noninteger moments of the partition function from the integer moments. We obtain bounds for the transition temperature for hierarchical and hypercubic lattices, and some similarities between the problem on the two different types of lattice are discussed.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...