Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 16 (1993), S. 278-292 
    ISSN: 0887-3585
    Keywords: protein structural comparison ; 3-D protein motifs ; surface motifs ; docking ; computer vision ; geometric hashing ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe the application of a method geared toward structural and surface comparison of proteins. The method is based on the Geometric Hashing Paradigm adapted from Computer Vision. It allows for comparison of any two sets of 3-D coordinates, such as protein backbones, protein core or protein surface motifs, and small molecules such as drugs. Here we apply our method to 4 types of comparisons between pairs of molecules: (1) comparison of the backbones of two protein domains; (2) search for a predefined 3-D Cα motif within the full backbone of a domain; and in particular, (3) comparison of the surfaces of two receptor proteins; and (4) comparison of the surface of a receptor to the surface of a ligand. These aspects complement each other and can contribute toward a better understandingof protein structure and biomolecular recognition. Searches for 3-D surface motifs can be carried out on either receptors or on ligands. The latter may result in the detection of pharmacophoric patterns. If the surfaces of the binding sites of either the receptors or of the ligands are relatively similar, surface superpositioning may aid significantly in the docking problem. Currently, only distance invariants are used in the matching, although additional geometric surface invariants are considered. The speed of our Geometric Hashing algorithm is encouraging, with a typical surface comparison taking only seconds or minutes of CPU time on a SUN 4 SPARC workstation. The direct application of this method to the docking problem is also discussed. We demonstrate the success of this methodin its application to two members of the globin family and to two dehydrogenases. © 1993 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0887-3585
    Keywords: van der Waals radius ; Coulombic radius ; docking ; molecular surface ; solvent-accessible surface ; protein-protein interface ; protein-water boundary ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We analyze the contact distance distributions between nonbonded atoms in known protein structures. A complete set of van der Waals (VDW) radii for 24 protein atom types and for crystal-bound water is derived from the contact distance distributions of these atoms with a selected group of apolar atoms. In addition, a set of Coulombic radii for polar atoms is derived from their contacts with water. The contact distance distributions and the two sets of radii are derived in a systematic and self-consistent manner using an iterative procedure. The Coulombic radii for polar atoms are, on average, 0.18 Å smaller than their VDW radii. The VDW radius of water is 1.7 Å, which is 0.3 Å larger than its Coulombic radius. We show that both the VDW and the Coulombic radii of polar atoms are needed in calculating the molecular and solvent-accessible surfaces of proteins. The VDW radii are needed to generate the apolar portions of the surface and the Coulombic radii for the polar portions. The fact that polar atoms have two apparent sizes implies that a hydrophobic cavity has to be larger than a polar cavity in order to accommodate the same number of water molecules. Most surface area calculations have used only one radius for each polar atom. As a result, unreal cavities, grooves, or pockets may be generated if the Coulombic radii of polar atoms are used. On the other hand, if the VDW radii of polar atoms are used, the details of the polar regions of the surface may be lost. The accuracy of the molecular and the solvent-accessible surfaces of proteins can be improved if the radii of polar atoms are allowed to change depending on the nature of their contacting neighbors. The surface of a protein at a protein-protein interface differs from that in solution in that it has to be generated using at least two kinds of probes, one representing a typical apolar atom and the other a typical polar atom. This observation has important implications for docking, which relies on surface complementarity at the interface. Proteins 32:111-127, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...