Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 32 (1994), S. 2221-2233 
    ISSN: 0887-6266
    Keywords: poly(ethylene glycol) ; ethylene oxide-propylene oxide copolymer ; blends ; poly(methyl methacrylate) ; LiCF3SO3 ; ionic conductivity ; effective medium theory ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Highly conductive solid polymeric electrolytes based upon low molecular weight poly(ethylene glycol) and ethylene oxide/propylene oxide copolymers blended with up to 50% by volume of poly(methyl methacrylate) have been synthesized using LiCF3SO3 (25:1 ether oxygen to cation ratio). Room-temperature ionic conductivities were measured to be in the range 10-4 to 10-5 S/cm for poly(methyl methacrylate) concentrations up to 30% by volume. In some cases, the addition of the poly(methyl methacrylate) enhanced the conductivity. All of the electrolytes studied were either amorphous or crystallized below 0°C. The variation of conductivity with temperature and polymer composition was measured and the results were analyzed in terms of effective medium theory and semiempirical considerations. Ionic transport is coupled to the structural relaxation of the polymer segments. At lower temperatures activated processes were required. Both charge carrier mobility and charge concentration were found to contribute to conduction. The effective medium theory quantitatively describes conductivities of amorphous heterogenous systems of limited miscibility (microphase separation) quite well. For miscible or partially crystalline systems other effects not incorporated in this theory play an important role, and conductivities are measured to be higher than theoretically predicted. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...