Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • energy metabolism  (3)
  • nongenomic glucocorticoid effects  (1)
  • 1
    ISSN: 1573-4935
    Schlagwort(e): bioenergetics of immune functions ; human peripheral blood mononuclear cells ; energy metabolism ; concanavalin A ; nongenomic glucocorticoid effects ; relative drug potencies
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract The first quantitative findings on the energy metabolism of human immunecells are presented. In quiescent peripheral blood mononuclear cells(PBMC) protein biosynthesis and Na+,K+-ATPase activity eachaccounted for 8% of cellular oxygen consumption. Stimulation with 25, 50,and 75 μg Con A/ml (1.25, 2.5 or 3.75 μg/106 cells) increased totaloxygen consumption within seconds by 8, 36, and 53%, respectively. Afteraddition of 75 μg Con A/ml, the proportion of cellular oxygenconsumption due to protein biosynthesis, Na+,K+-ATPase activity,and Ca2+-ATPase activity was 15% each and that due to DNA/RNAsynthesis was 8%. On the basis of these findings the immediate effectsof five different glucocorticoids on cellular energy metabolism wereinvestigated. The various glucocorticoids exerted basically the sameinhibitory effects on Con A-stimulated cellular respiration and individualATP-consuming processes, but differed significantly in potency. Similar toprevious studies on rat thymocytes, the relative potencies of theglucocorticoids were found to be: prednylidene (1.7)〈dexamethasone(1.5)〈methylprednisolone (1.0)〈prednisolone (0.3)〈betamethasone(〉0.2). Given their rapidity of onset, these effects must benongenomically mediated. The differences between the relative potencies ofthe various glucocorticoids for these effects and those for the classicalgenomic effects have important clinical implications, in particular forhigh-dose systemic and local glucocorticoid therapy.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-4935
    Schlagwort(e): Ehrlich ascites tumour cells ; energy metabolism ; methylprednisolone ; cell membrane ; phospholipid turnover ; calcium
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract Using Ehrlich ascites tumour cells, the short-term effects of the therapeutic glucocorticoid Methylprednisolone (MP) on the cellular energy metabolism were studied. ATP-consuming processes involved in the rapid MP effects were identified indirectly from the effects of MP on cellular oxygen consumption related to the inhibition of respiration by selective inhibitors of Ca2+-ATPase and protein synthesis. The effects of MP on plasma membrane permeability for Ca2+ ions and phospholipid turnover were studied directly by using confocal laser scanning microscopy and tracerkinetic measurements, respectively. MP inhibited cellular oxygen consumption, suppressed the inhibitory effect of lanthanum but not that of cycloheximide on oxygen consumption, blocked the [Ca2+]i rise in response to calcium ionophore A 23187, and decreased phospholipid turnover. MP acted instantly in a dose-dependent manner. The observed effects of MP are discussed in relation to the hypothesis that the drug has direct membrane effect affecting plasma membrane permeability and function.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    ISSN: 1573-4935
    Schlagwort(e): methylprednisolone ; thymocytes ; ConA ; energy metabolism ; oxygen consumption ; Ca2+ metabolism
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Chemie und Pharmazie
    Notizen: Abstract The short-term effects of high concentrations of Methylprednisolone (MP) on the energy metabolism of quiescent and Concanavalin A-stimulated rat thymocytes were investigated in vitro. Concanavalin A (ConA) stimulated the respiration rate of quiescent thymocytes by 35%. Addition of more than 0.15 mg MP/107 cells to ConA-stimulated cells reversed this respiratory stimulation; in addition, higher concentrations of MP caused a similar progressive decrease in the rate of respiration of both quiescent and ConA-stimulated cells. Similarly, the stimulation of respiration by ConA was greatly reduced in MP-treated cells. MP addition lowered cytoplasmic [Ca2+] and, at high concentrations, abolished the ability of ConA to increase [Ca2+]. Thus MP both reverses and prevents the immediate stimulation of thymocytes by ConA. In quiescent thymocytes, MP strongly inhibited that part of the oxygen consumption used to drive the cycle of Na+ influx across the plasma membrane and Na+ efflux on the Na+K+-ATPase, but did not inhibit oxygen consumption used to drive protein synthesis. In ConA-stimulated thymocytes MP had the same effects and also strongly inhibited oxygen consumption dependent on the cycle of Ca2+ influx across the plasma membrane and Ca2+ efflux on the Ca2+-ATPase, but had little effect on oxygen consumption used to drive RNA and DNA synthesis. These results show that MP prevents cation cycling in thymocytes (either by preventing cation influx or by inhibiting cation pumps) and prevents mitogenic stimulation of the cells. The high MP concentration required and the speed of onset of the effect (lless than 30s) provide strong evidence that these effects of MP are not mediated by glucocorticoid receptors and subsequent activation of gene expression. They may be caused by direct effects of MP on the properties of the plasma membrane. These effects are considered to be, at least partially, responsible for the beneficial results that currently have been obtained using MP megadoses in various clinical situations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...