Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 697-718 
    ISSN: 0006-3592
    Keywords: generalized degree of reduction ; energy regularity ; second law constraints ; nonphotosynthetic fermentation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, we provide a rigorous thermodynamic analysis of microbial growth process, clarify the role of the generalized degree of reduction concept as it is used in both stoichiometric equations and as a characterizing factor for thermophysical properties, and introduce a classification method to account for errors when using the generalized degree of reduction to estimate the energy and free energy contents of molecules. We maintain the advantages of using the generalized degree of reduction while correcting for the large errors in the principle of energy regularity, especially for small molecules and for nitrogen-source compounds. As a result, we obtain more accurate energy balances (heat loads) and second law constraints, and are able to clarify contradictory statements in the literature as to whether nonphotosynthesis fermentation process can produce oxygen or absorb rather than produce heat. Indeed, the answers to such questions become evident using the classification system introduced here.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...