Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 31 (1993), S. 939-947 
    ISSN: 0887-624X
    Keywords: polymer-supported onium salt catalyst ; catalytic effect ; synthesis of cyclic carbonate ; oxirane ; carbon dioxide ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The addition reaction of oxiranes (26a - e) with carbon dioxide (CO2) was performed using insoluble polystyrene beads containing pendant quaternary ammonium or phosphonium salts as catalysts under atmospheric pressure. The reaction of 26a - e with CO2 proceeded smoothly catalyzed by 1-2 mol % of the polymer-supported quaternary onium salts to give the corresponding cyclic carbonates (27a - e) in high yields at 80-90°C. In this reaction system, the catalytic activity of the polymer-supported quaternary onium salts was strongly affected by the following factors: degree of ring substitution (DRS) of the onium salt residues to the polymer, degree of crosslinking (DC) of the polystyrene beads, chain length of the alkylene spacer between the polymer back-bone and the onium salt, hydrophobicity of the alkyl group on the onium salts, and kind of onium salts. That is, the polymer-supported quaternary phosphonium salts with low DRS and DC and with long alkylene spacer chain were found to have higher catalytic activity than low molecualr weight quaternary onium salts. The above polymer-supported catalysts can easily be separated at the end of a reaction by filtration and can be reused for at least seven runs. It was also found that the rate of reaction was proportional to the products of catalyst concentration and oxirane concentration. © 1993 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0959-8103
    Keywords: epoxy resin ; p,p′-diaminodiphenyl sulphone ; modification ; influence of hybrid modifier compositions ; fracture toughness ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Hybrid modifiers composed of N-phenylmaleimide-styrene copolymers (PMS), and N-phenylmaleimide-styrene-p-hydroxystyrene terpolymers (PMSH) containing pendent p-hydroxyphenyl groups as functionalities, were used to improve the toughness of bisphenol-A diglycidyl ether epoxy resin cured with p,p′-diaminodiphenyl sulphone. The hybrid modifiers were effective in toughening the epoxy resin. When using the modifier composed of 10 wt% PMS (M̄w 313000) and 2.5 wt% PMSH (2.5 mol% p-hydroxystyrene units, M̄w 316000), the fracture toughness (KIC) for the modified resins increased 100% with no deterioration in the flexural properties and the glass transition temperature. The improvement in toughness of the epoxy resins was attained because of the co-continuous phase structure and the improvement in interfacial adhesion. The toughening mechanism is discussed in terms of the morphological characteristics of the modified epoxy resin systems.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...