Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles: DFG German National Licenses  (2)
  • Atomic, Molecular and Optical Physics  (1)
  • ethane oxidative dehydrogenation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 40 (1996), S. 101-104 
    ISSN: 1572-879X
    Keywords: ethane oxidative dehydrogenation ; O2 activation ; SmOF ; dioxygen species and mono-oxygen species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The activation of O2 over SmOF was studied by in situ laser Raman spectrometry and temperature programmed desorption (TPD). When the hydrogen- and helium-treated (1 h for each gas at 973 K) SmOF sample was cooled to 303 K in oxygen, Raman bands which correspond to the existence of O 2 2− , O 2 n− (2 〉n 〉 1), O 2 − and O 2 δ- (1 〉δ 〉 0) species were observed. From 303 to 973 K, there was no O2 desorption but the Raman bands observed at 303 K reduced in intensity and vanished completely at 973 K, even though the sample was under an atmosphere of oxygen. We suggest that as the sample temperature increased, dioxygen species were converted to mono-oxygen species such as O− which were undetectable by Raman spectrometry. O2 desorption occurred above 973 K, giving a TPD-peak at 1095 K. When C2 H6 was pulsed over the sample pretreated with oxygen and helium at 973 K, C2H4 selectivity was 91.8%. We conclude that the mono-oxygen species is responsible for the oxidative dehydrogenation of ethane to ethene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 21 (1982), S. 179-190 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We present summary results of a bound-state perturbation theory for a one-space and one-time dimension nonrelativistic spinless (Schrödinger) particle, a relativistic spinless (Klein-Gordon) particle, and a relativistic spin-half (Dirac) particle in central fields due to scalar or fourth-component vector-type interactions for an arbitrary bound state. This is accomplished by the reduction of the wave equations to Ricatti form. This enables a decoupling between the pair of coupled first order differential equations on the large and small component Dirac wave functions or a decoupling of the second order differential equation in the Schrödinger or Klein-Gordon equations. All corrections to the energies and wave functions, including corrections to the positions of the nodes in excited states, are expressed in quadratures in a hierarchial scheme, without the use of either the Green's function or the sum over intermediate states. For the ground states of a Schrödinger particle, it is possible to extend this technique to multidimension in the case where the perturbation is due to noncentral fields, for example, in the problem of a nonrelativistic hydrogen atom in a linear combination of multiple fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...