Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 155-158 
    ISSN: 0006-3592
    Keywords: Zymomonas ; yeast ; ethanol ; inhibition ; adaptation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In high cell density batch fermentations, Zymomonas mobilis produced 91 g L-1 ethanol in 90 min but culture viability fell significantly. Similar viability losses in rapid fermentations by yeast have recently been shown to be attributable in part to the high rate of change of the extracellular ethanol concentration. However, in simulated rapid fermentations in which ethanol was pumped continuously to low cell density Z. mobilis suspensions, increases in the rate of change of ethanol concentration in the range 21-83 g L-1 h-1 did not lead to accelerated viability losses. The lag phase of Zymomonas cultures exposed to a 30-g L-1 step change in ethanol concentration was much shorter than that of Saccharomyces cerevisiae, providing evidence that the comparative insensitivity of Zymomonas to high rates of change of ethanol concentration is due to its ability to adapt to changes in ethanol concentration more rapidly than yeast. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 71-78 
    ISSN: 0006-3592
    Keywords: Zymomonas ; yeast ; acetaldehyde ; ethanol ; stress ; inhibition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The lag phase of Saccharomyces cerevisiae subjected to a step increase in temperature or ethanol concentration was reduced by as much as 60% when acetaldehyde was added to the medium at concentrations less than 0.1 g/L. Maximum specific growth rates were also substantially increased. Even greater proportional reductions in lag time due to acetaldehyde addition were observed for ethanol-shocked cultures of Zymomonas mobilis. Acetaldehyde had no effect on S. cerevisiae cultures started from stationary phase inocula in the absence of environmental shock and its lag-reducing effects were greater in complex medium than in a defined synthetic medium. Acetaldehyde reacted strongly with the ingredients of complex culture media. It is proposed that the effect of added acetaldehyde may be to compensate for the inability of cells to maintain transmembrane acetaldehyde gradients following an environmental shock. © 1997 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...