Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Advances in computational mathematics 4 (1995), S. 331-355 
    ISSN: 1572-9044
    Keywords: Boundary integral equations ; domain decomposition ; fast elliptic problem solvers ; interface operators ; matrix compression ; multilevel preconditioning ; 65N30 ; 65N20 ; 65P10
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In this paper we propose and analyze some strategies to construct asymptotically optimal algorithms for solving boundary reductions of the Laplace equation in the interior and exterior of a polygon. The interior Dirichlet or Neumann problems are, in fact, equivalent to a direct treatment of the Dirichlet-Neumann mapping or its inverse, i.e., the Poincaré-Steklov (PS) operator. To construct a fast algorithm for the treatment of the discrete PS operator in the case of polygons composed of rectangles and regular right triangles, we apply the Bramble-Pasciak-Xu (BPX) multilevel preconditioner to the equivalent interface problem in theH 1/2-setting. Furthermore, a fast matrix-vector multiplication algorithm is based on the frequency cutting techniques applied to the local Schur complements associated with the rectangular substructures specifying the nonmatching decomposition of a given polygon. The proposed compression scheme to compute the action of the discrete interior PS operator is shown to have a complexity of the orderO(N log q N),q ε [2, 3], with memory needsO(N log2 N), whereN is the number of degrees of freedom on the polygonal boundary under consideration. In the case of exterior problems we propose a modification of the standard direct BEM whose implementation is reduced to the wavelet approximation applied to either single layer or hypersingular harmonic potentials and, in addition, to the matrix-vector multiplication for the discrete interior PS operator.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Numerical Linear Algebra with Applications 3 (1996), S. 91-111 
    ISSN: 1070-5325
    Keywords: boundary integral operators ; domain decomposition ; interface operators ; fast elliptic problem solvers ; parallel algorithms ; preconditioning ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics
    Notes: In this paper a method for fast computations with the inverse to weakly singular, hypersingular and double layer potential boundary integral operators associated with the Laplacian on Lipschitz domains is proposed and analyzed. It is based on the representation formulae suggested for above-mentioned boundary operations in terms of the Poincare-Steklov interface mappings generated by the special decompositions of the interior and exterior domains. Computations with the discrete counterparts of these formulae can be efficiently performed by iterative substructuring algorithms provided some asymptotically optimal techniques for treatment of interface operators on subdomain boundaries. For both two- and three-dimensional cases the computation cost and memory needs are of the order O(N logp N) and O(N log2 N), respectively, with 1 ≤ p ≤ 3, where N is the number of degrees of freedom on the boundary under consideration (some kinds of polygons and polyhedra). The proposed algorithms are well suited for serial and parallel computations.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...