Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 58 (1988), S. 165-207 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; abort landing ; quasi-steady flight to quasi-steady flight transition ; optimal trajectories ; optimal control ; guidance strategies ; acceleration guidance ; gamma guidance ; feedback control ; windshear problems ; sequential gradient-restoration algorithm ; dual sequential gradient-restoration algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with the optimal transition and the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The abort landing problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered. It is assumed that a transition from descending flight to ascending flight is desired; that the initial state corresponds to quasi-steady flight with absolute path inclination of −3.0 deg; and that the final path inclination corresponds to quasi-steady steepest climb. Also, it is assumed that, as soon as the shear is detected, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative. First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the instantaneous altitude and a reference value, assumed constant. By suitable transformations, the Chebyshev problem is converted into a Bolza problem. Then, the Bolza problem is solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. Two types of optimal trajectories are studied, depending on the conditions desired at the final point. Type 1 is concerned with gamma recovery (recovery of the value of the relative path inclination corresponding to quasi-steady steepest climb). Type 2 is concerned with quasi-steady flight recovery (recovery of the values of the relative path inclination, the relative velocity, and the relative angle of attack corresponding to quasi-steady steepest climb). Both the Type 1 trajectory and the Type 2 trajectory include three branches: descending flight, nearly horizontal flight, and ascending flight. Also, for both the Type 1 trajectory and the Type 2 trajectory, descending flight takes place in the shear portion of the trajectory; horizontal flight takes place partly in the shear portion and partly in the aftershear portion of the trajectory; and ascending flight takes place in the aftershear portion of the trajectory. While the Type 1 trajectory and the Type 2 trajectory are nearly the same in the shear portion, they diverge to a considerable degree in the aftershear portion of the trajectory. Next, trajectory guidance is considered. Two guidance schemes are developed so as to achieve near-optimum transition from quasi-steady descending flight to quasi-steady ascending flight: acceleration guidance (based on the relative acceleration) and gamma guidance (based on the absolute path inclination). The guidance schemes for quasi-steady flight recovery in abort landing include two parts in sequence: shear guidance and aftershear guidance. The shear guidance is based on the result that the shear portion of the trajectory depends only mildly on the boundary conditions. Therefore, any of the guidance schemes already developed for Type 1 trajectories can be employed for Type 2 trajectories (descent guidance followed by recovery guidance). The aftershear guidance is based on the result that the aftershear portion of the trajectory depends strongly on the boundary conditions; therefore, the guidance schemes developed for Type 1 trajectories cannot be employed for Type 2 trajectories. For Type 2 trajectories, the aftershear guidance includes level flight guidance followed by ascent guidance. The level flight guidance is designed to achieve almost complete velocity recovery; the ascent guidance is designed to achieve the desired final quasi-steady state. The numerical results show that the guidance schemes for quasi-steady flight recovery yield a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, allows the aircraft to achieve the final quasi-steady state, and has good stability properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 50 (1986), S. 1-47 
    ISSN: 1573-2878
    Keywords: Guidance strategies ; gamma guidance ; theta guidance ; acceleration guidance ; flight mechanics ; take-off ; optimal trajectories ; optimal control ; feedback control ; windshear problems ; sequential gradient-restoration algorithm ; dual sequential gradient-restoration algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane. First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed. Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed. Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance. Numerical experiments show that guidance schemes (A)–(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)–(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)–(I). An important characteristic of guidance schemes (A)–(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 53 (1987), S. 181-217 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; take-off ; windshear problems ; optimal trajectories ; guidance strategies ; piloting techniques ; feedback control ; gamma guidance ; simplified gamma guidance ; quick transition to horizontal flight
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with guidance strategies and piloting techniques which ensure near-optimum performance and maximum survival capability in a severe windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is assumed. First, six particular guidance schemes are considered, namely: constant alpha guidance; maximum alpha guidance; constant velocity guidance; constant absolute path inclination guidance; constant rate of climb guidance; and constant pitch guidance. Among these, it is concluded that the best one is the constant pitch guidance. Next, in an effort to improve over the constant pitch guidance, three additional trajectories are considered: the optimal trajectory, which minimizes the maximum deviation of the absolute path inclination from a reference value, while employing global information on the wind flow field; the gamma guidance trajectory, which is based on the absolute path inclination and which approximates the behavior of the optimal trajectory, while employing local information on the windshear and the downdraft; and the simplified gamma guidance trajectory, which is the limiting case of the gamma guidance trajectory in a severe windshear and which does not require precise information on the windshear and the downdraft. The essence of the simplified gamma guidance trajectory is that it yields a quick transition to horizontal flight. Comparative numerical experiments show that the survival capability of the simplified gamma guidance trajectory is superior to that of the constant pitch trajectory and is close to that of the optimal trajectory. Next, with reference to the simplified gamma guidance trajectory, the effect of the feedback gain coefficient is studied. It is shown that larger values of the gain coefficient improve the survival capability in a severe windshear; however, excessive values of the gain coefficient are undesirable, because they result in larger altitude oscillations and lower average altitude. Finally, with reference to the simplified gamma guidance trajectory, the effect of time delays is studied, more specifically, the time delay τ1 in reacting to windshear onset and the time delay τ2 in reacting to windshear termination. While time delay τ2 has little effect on survival capability, time delay τ1 appears to be critical in the following sense: smaller values of τ1 correspond to better survival capability in a severe windshear, while larger values of τ1 are associated with a worsening of the survival capability in a severe windshear.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 54 (1987), S. 203-240 
    ISSN: 1573-2878
    Keywords: Flight mechanics ; take-off ; quasi-steady flight to quasisteady flight transition ; optimal trajectories ; optimal control ; guidance strategies ; feedback control ; windshear problems ; sequential gradient-restoration algorithm ; dual sequential gradient-restoration algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper is concerned with the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered. It is assumed that the power setting is held at the maximum value and that the aircraft is controlled through the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative. First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the absolute path inclination and a reference value, assumed constant. Two types of optimal trajectories are studied: type 1 is concerned with gamma recovery (recovery of the initial value of the relative path inclination); and type 2 is concerned with quasisteady flight recovery (recovery of the initial values of the relative velocity, the relative path inclination, and the relative angle of attack). The numerical results show that the type 1 trajectory and the type 2 trajectory are nearly the same in the shear portion, while they diverge to a considerable degree in the aftershear portion of the optimal trajectory. Next, trajectory guidance is considered. A guidance scheme is developed so as to achieve near-optimum quasi-steady flight recovery in a windshear. The guidance scheme for quasi-steady flight recovery includes three parts in sequence. The first part refers to the shear portion of the trajectory and is based on the result that this portion of the trajectory depends only mildly on the boundary conditions; therefore, any of the guidance schemes already developed for type 1 trajectories can be employed (for instance, variable gamma guidance). The second part (constant gamma guidance) refers to the initial aftershear portion of the trajectory and is designed to achieve almost velocity recovery. The third part (constant rate of climb guidance) refers to the final aftershear portion of the trajectory and is designed to achieve almost complete restoration of the initial quasi-steady state. While the shear guidance and the initial aftershear guidance employ constant gain coefficients, the final aftershear guidance employs a variable gain coefficient. This is done in order to obtain accuracy and prompt response, while avoiding oscillations and overshoots. The numerical results show that the guidance scheme for quasi-steady flight recovery yields a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, ensures the restoration of the initial quasi-steady state, and has good stability properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...