Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 201-213 
    ISSN: 0271-2091
    Keywords: curved surface ; shallow water ; non-hydrostatic ; spillway ; finite element ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In Part I a detailed derivation of a more general shallow water equation set was developed via a perturbation analysis. A finite element computational model of these more general equations is now constructed and the model behavior is compared with conventional shallow water formulations applied to an outletworks flume. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 28 (1998), S. 191-200 
    ISSN: 0271-2091
    Keywords: curved surface ; shallow water ; non-hydrostatic ; spillway ; finite element ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The standard two-dimensional shallow water equation formulation assumes a mild bed slope and no curvature effect. These assumptions limit the applicability of these equations for some important classes of problems. In particular, flow over a spillway is affected by the bed curvature via a decidedly non-hydrostatic pressure distribution. A detailed derivation of a more general equation set is given here in Part I. The method relies upon a perturbation expansion to simplify a bed-fitted co-ordinate configuration of the three-dimensional Euler equations. The resulting equations are essentially the equivalent of the two-dimensional shallow water equations but with curvature included and without the mild slope assumption. A finite element analysis and flume result are given in Part II. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1967-1984 
    ISSN: 0029-5981
    Keywords: shape optimization ; finite element ; electromagnet design ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A strategy for the efficient solution of non-linear shape optimization problems is developed. This strategy employs an integrated element-by-element approach to the solution of the governing partial differential equations, and, more particularly, to the computation of the necessary gradients of the objective function and constraints using an adjoint formulation. This proves to be a very efficient strategy and also is relatively easy to implement, because the local effect of design changes can be exploited. The method is tested with an application involving the design of the shape of electromagnet poles in order to obtain a desired field in the interpolar region.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...