Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 19 (1998), S. 977-988 
    ISSN: 0192-8651
    Keywords: quantum mechanical/molecular mechanical ; free energy ; hydride ion ; molecular dynamics ; catalysis ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: We used molecular dynamics simulation and free energy perturbation (FEP) methods to investigate the hydride-ion transfer step in the mechanism for the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of a novel substrate by the enzyme dihydrofolate reductase (DHFR). The system is represented by a coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1 semiempirical molecular orbital method for the reacting substrate and NADPH cofactor fragments, the AMBER force field for DHFR, and the TIP3P model for solvent water. The FEP calculations were performed for a number of choices for the QM system. The substrate, 8-methylpterin, was treated quantum mechanically in all the calculations, while the larger cofactor molecule was partitioned into various QM and MM regions with the addition of “link” atoms (F, CH3, and H). Calculations were also carried out with the entire NADPH molecule treated by QM. The free energies of reaction and the net charges on the NADPH fragments were used to determine the most appropriate QM/MM model. The hydride-ion transfer was also carried out over several FEP pathways, and the QM and QM/MM component free energies thus calculated were found to be state functions (i.e., independent of pathway). A ca. 10 kcal/mol increase in free energy for the hydride-ion transfer with an activation barrier of ca. 30 kcal/mol was calculated. The increase in free energy on the hydride-ion transfer arose largely from the QM/MM component. Analysis of the QM/MM energy components suggests that, although a number of charged residues may contribute to the free energy change through long-range electrostatic interactions, the only interaction that can account for the 10 kcal/mol increase in free energy is the hydrogen bond between the carboxylate side chain of Glu30 (avian DHFR) and the activated (protonated) substrate.   © 1998 John Wiley & Sons, Inc.   J Comput Chem 19: 977-988, 1998
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 18 (1997), S. 1496-1512 
    ISSN: 0192-8651
    Keywords: QM/MM ; solvation ; free energy ; hydrogen bonds ; force fields ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A coupled quantum mechanical and molecular mechanical (QM/MM) model based on the AM1, MNDO, and PM3 semiempirical molecular orbital methods and the TIP3P molecular mechanics model for liquid water is presented. The model was parameterized for each of the three molecular orbital methods using the aqueous solvation free energies of a wide range of neutral organic molecules, many of which are representative of amino acid side chains. The fit to the experimental solvation free energies was achieved by varying the radii in the van der Waals (vdW) terms for interactions between the solute, which was treated quantum mechanically, and the molecular mechanics (TIP3P) solvent molecules. It is assumed that the total free energy can be obtained as the sum of components derived from the electrostatic terms in the Hamiltonian plus a generally smaller “nonelectrostatic” term. The electrostatic contributions to the solvation free energies were computed using molecular dynamics (MD) simulation and thermodynamic integration techniques; the nonelectrostatic contributions were taken from the literature. It was found that the experimental free energies could be reproduced accurately (to within 1 kcal/mol) from the MD simulations, provided that the vdW parameter associated with hydrogen bonding (H bonding) was allowed to have different values depending on the QM method (AM1, MNDO, or PM3) and the type of functional group involved in the H bonding. Moreover, the radial distribution functions obtained from the MD simulations using such a parameterization scheme showed the expected H-bonded structures between the solute and molecules of the solvent. The solvent-induced dipole moments also compared favorably with the results of other QM/MM model calculations.   © 1997 John Wiley & Sons, Inc.   J Comput Chem 18: 1496-1512, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 15 (1993), S. 426-435 
    ISSN: 0887-3585
    Keywords: molecular dynamics ; free energy ; perturbation theory ; kinetic mechanism ; dissociation constants ; dihydrofolate reductase ; 8-methyl-pterins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecular dynamics simulation and free energy perturbation techniques have been used to study the relative binding free energies of the designed mechanism-based pterins, 8-methylpterin and 6,8-dimethylpterin, to dihydrofolate reductase (DHFR), with co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The calculated free energy differences suggest that DHFR.NADPH.6,8-dimethylpterin is thermodynamically more stable than DHFR.NADPH.8-methylpterin by 2.4 kcal/mol when the substrates are protonated and by 1.3 kcal/mol when neutral. The greater binding strength of 6,8-dimethylpterin may be attributed largely to hydration effects. In terms of an appropriate model for the pH-dependent kinetic mechanism, these differences can be interpreted consistently with experimental data obtained from previous kinetic studies, i.e., 6,8-dimethylpterin is a more efficient substrate of vertebrate DHFRs than 8-methylpterin. The kinetic data suggest a value of 6.6 ± 0.2 for the pKa of the active site Glu-30 in DHFR.NADPH. We have also used experimental data to estimate absolute values for thermodynamic dissociation constants of the active (i.e., protonated) forms of the substrates: these are of the same order as for the binding of folate (0.1-10 μM). The relative binding free energy calculated from the empirically derived dissociation constants for the protonated forms of 8-methylpterin and 6,8-dimethylpterin is 1.4 kcal/mol, a value which compares reasonably well with the theoretical value of 2.4 kcal/mol. © 1993 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...