Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 29 (1990), S. 71-87 
    ISSN: 1435-1528
    Keywords: Bicomponentextrusion ; free surfaceflows ; finite element method ; three-dimensional (3-D)-flows ; dieextrusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The present work is concerned with the mathematical modelling and numerical simulation of three-dimensional (3-D) bicomponent extrusion. The objective is to provide an understanding of the flow phenomena involved and to investigate their impact on the free surface shape and interface configuration of the extruded article. A finite element algorithm for the 3-D numerical simulation of bicomponent stratified free surface flows is described. The presence of multiple free surfaces (layer interface and external free surfaces) requires special free surface update schemes. The pressure and viscous stress discontinuity due to viscosity mismatch at the interface between the two stratified components is handled with both a double node (u−v−w−P 1 −P 2 −h 1 −h 2) formulation and a penalty function (u−v−w−P−h 1 −h 2) formulation. The experimentally observed tendency of the less viscous layer to encapsulate the more viscous layer in stratified bicomponent flows of side-by-side configuration is established with the aid of a fully 3-D analysis in agreement with experimental evidence. The direction and degree of encapsulation depend directly on the viscosity ratio of the two melts. For shear thinning melts exhibiting a viscosity crossover point, it is demonstrated that interface curvature reversal may occur if the shearing level is such that the crossover point is exceeded. Extrudate bending and distortion of the bicomponent system because of the viscosity mismatch is shown. For flows in a sheath-core configuration it is shown that the viscosity ratio may have a severe effect on the swelling ratio of the bicomponent system. Modelling of the die section showed that the boundary condition imposed at the fluid/fluid/wall contact point is critical to the accuracy of the overall solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...