Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neural transmission 97 (1994), S. 135-147 
    ISSN: 1435-1463
    Keywords: Aging ; second messenger ; rolipram ; gerbil ; phosphodiesterase ; receptor autoradiography ; neurotransmitter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Age-related alterations in binding sites of major second messengers and a selective adenosine 3′,5′-cyclic monophosphate (cyclic-AMP) phospho-diesterase (PDE) in the gerbil brain were analysed by receptor autoradiography. [3H]Phorbol 12,13-dibutyrate (PDBu), [3H]inositol 1,4,5-trisphosphate (IP3), [3H]forskolin, [3H]cyclic-AMP, and [3H]rolipram were used to label protein kinase C (PKC), IP3 receptor, adenylate cyclase, cyclic-AMP dependent protein kinase (PKA), and Ca2+/calmodulin-mdependent cyclic-AMP PDE, respectively. In middle-aged gerbils (16 months old), [3H]PDBu binding was significantly reduced in the hippocampal CA 1 sector, thalamus, substantia nigra, and cerebellum, compared with young animals (1 month old). [3H]IP3 binding revealed significant elevations in the nucleus accumbens, hippocampal CA 1 sector, dentate gyrus, and a significant reduction in cerebellum of middle-aged gerbils. [3H]Forskolin binding in middle-aged animals was significantly increased in the nucleus accumbens and hilus of dentate gyrus, but was diminished in the substantia nigra and cerebellum. On the other hand, in middle-aged animals, [3H]cyclic-AMP binding revealed a significant elevation only in the hippocampal CA3 sector, whereas [3H] rolipram binding showed a significant reduction in the thalamus and cerebellum. Thus, the age-related alteration in these binding sites showed different patterns among various brain regions in middle-aged gerbils indicating that the binding sites of PKC, IP3, and adenylate cyclase are more markedly affected by aging than those of PKA and cyclicAMP PDE and that the hippocampus and cerebellum are more susceptible to these aging processes than other brain regions. The findings suggest that in-tracellular signal transduction is affected at an early stage of senescence and this may lead to neurological deficits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-7365
    Keywords: transient ischemia ; dopamine D1 ; naloxone ; forskolin ; receptor autoradiography ; gerbil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We investigated the long-term changes that occur in the gerbil brain following transient cerebral ischemia using histology and receptor autoradiography. Transient ischemia was induced for 3 and 10 min, and animals were allowed to survive for 8 months. A histological study showed that 3-min ischemia caused neuronal damage and mild atrophy only in the hippocampal CA1 sector, and that 10-min ischemia produced severe neuronal damage and marked shrinkage in the hippocampal CA1 and CA3 sectors. Furthermore, severe neuronal damage was seen in the striatum after 10-min ischemia. Autoradiography study revealed that 3-min ischemia caused a significant reduction in [3H] naloxone binding in the frontal cortex, striatum, dentate gyrus, and thalamus, whereas [3H]SCH 23390 and [3H] forskolin binding was not significantly altered in all regions, In contrast, 10-min ischemia produced marked alteration in these binding sites in the striatum, hippocampus, thalamus, and substantia nigra. The alteration was especially notable in the hippocampal region and substantia nigra. These results indicate that hippocampal damage after transient ischemia, compared with that in other regions, is not static, but particularly progressive. Furthermore, they demonstrate a reduction in adenylate cyclase system in the striatum and substantia nigra after transient ischemia. Moreover, our results suggest that long-term survival after ischemia may induce synaptic modification of neurotransmitter and adenylate cyclase system in the hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...