Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0428
    Keywords: Keywords Diabetic retinopathy ; prediction ; lymphocytes ; glycation.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Aims/hypothesis. We investigated whether either the amount of diabetes-induced intracellular oxidative stress or the concentration of hyperglycaemia-induced advanced glycation endproducts is associated with the risk of diabetic retinopathy. Methods. We measured concentrations of the glycoxidation product Ne-(carboxymethyl)lysine and two non-oxidation-dependent advanced glycation endproducts (methylglyoxal-derived and 3-deoxyglucosone-derived) in CD45RA+ T-cells from 21 Type I (insulin-dependent) diabetic patients with and without diabetic retinopathy and from age-matched non-diabetic control subjects. Results. Intracellular concentrations of both oxidation-dependent Ne-(carboxymethyl)lysine and oxidation-independent advanced glycation endproducts were increased in memory T-cells from diabetic patients. Ne-(carboxymethyl)lysine: diabetic median-24 176 arbitrary units/mg protein (95 % confidence interval 18 690–34 099 arbitrary units/mg protein); nondiabetic-9088 arbitrary units/mg protein (confidence interval 6994–10 696 arbitrary units/mg protein; p 〈 0.0001). Methylglyoxal-derived advanced glycation end products: diabetic-5430 arbitrary units/mg protein (confidence interval 3458–13 610); nondiabetic-271 arbitrary units/mg protein (confidence interval 61–760 arbitrary units/mg protein; p 〈 0.0001). 3-Deoxyglucosone-derived advanced glycation end products: diabetic-8070 arbitrary units/mg protein (confidence interval 7049–16 551 arbitrary units/mg protein); nondiabetic-1479 arbitrary units/mg protein (confidence interval 1169–3170; p 〈 0.0001). Only Ne-(carboxymethyl)lysine concentrations, however, inversely correlated with the duration of retinopathy-free diabetes (r = –0.51; p 〈 0.02). Diabetes-dependent Ne-(carboxymethyl)lysine accumulation did not correlate with age, diabetes duration, or averaged glycohaemoglobin concentrations. In vitro experiments wih menadione and lymphocytes confirmed that Ne-(carboxymethyl)lysine concentrations reflect intracellular oxidative stress. Conclusion/interpretation. Monitoring intracellular concentrations of increased oxidative stress in long-lived CD45RA+ lymphocytes by markers such as Ne-(carboxymethyl)lysine possibly identifies a subgroup of patients at high risk for microvascular complications. [Diabetologia (1999) 42: 603–607]
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...