Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: barley ; 14C ; C distribution ; gross immobilization ; gross mineralization ; 15N fertilizer ; N transformations ; rhizosphere ; root-derived C ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Below-ground carbon (C) production and nitrogen (N) flows in the root-zone of barley supplied with high or low amounts of N-fertilizer were investigated. Interest was focused on the effect of the level of N-fertilizer on the production of root-derived C and on gross immobilization (i) and gross mineralization (m) rates. The plants were grown for 46 days in a sandy loam soil. Principles of pool dilution and changes in15N pool abundances were used in conjunction with mathematical modelling to calculate the flows of N. N was applied at a high or a low rate, as (15NH4)2SO4 solution (17.11 atom%15N excess), before sowing. Nitrification was inhibited by using nitrapyrin (N-Serve). Pots were sampled four or five times during the experimental period, i.e. 0, 22, 30, 38 and 46 days after germination. On the three last sampling occasions, samples were also collected from pots in a growth chamber with14C-labelled atmosphere. The release of14C, measured as the proportion of the total14C translocated below ground, was higher in the high-N treatment, but the differences between treatments were small. Our results were not conclusive in demonstrating that high-N levels stimulate the decomposition and microbial utilization of root-released materials. However, the internal circulation of soil-N, calculated N fluxes (m), which were in accordance with C mineralization rates and amounts of unlabelled N found in the plants (PU), suggested that the decomposition of native soil organic matter was hampered in the high-N treatment. Apparently, towards the end of the experimental period, microorganisms in the low-N treatment used C from soil organic matter to a greater extent than C they used from root released material, presumably because lower amounts of mineral N were available to microorganisms in the low-N treatment. Immobilization of N appeared to be soil driven (organisms decomposing soil organic matter account for the N demand) at low-N and root-driven (organisms decomposing roots and root-derived C account for the N demand) at high-N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: barley ; 14C ; C distribution ; gross immobilization ; gross mineralization ; 15N fertilizer ; N transformations ; rhizosphere ; root-derived C ; simulation model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Below-ground carbon (C) production and nitrogen (N) flows in the root-zone of barley supplied with high or low amounts of N-fertilizer were investigated. Interest was focused on the effect of the level of N-fertilizer on the production of root-derived C and on gross immobilization (i) and gross mineralization (m) rates. The plants were grown for 46 days in a sandy loam soil. Principles of pool dilution and changes in 15N pool abundances were used in conjunction with mathematical modelling to calculate the flows of N. N was applied at a high or a low rate, as (15NH4)2SO4 solution (17.11 atom% 15N excess), before sowing. Nitrification was inhibited by using nitrapyrin (N-Serve). Pots were sampled four or five times during the experimental period, i.e. 0, 22, 30, 38 and 46 days after germination. On the three last sampling occasions, samples were also collected from pots in a growth chamber with 14C-labelled atmosphere. The release of 14C, measured as the proportion of the total 14C translocated below ground, was higher in the high-N treatment, but the differences between treatments were small. Our results were not conclusive in demonstrating that high-N levels stimulate the decomposition and microbial utilization of root-released materials. However, the internal circulation of soil-N, calculated N fluxes (m), which were in accordance with C mineralization rates and amounts of unlabelled N found in the plants (PU), suggested that the decomposition of native soil organic matter was hampered in the high-N treatment. Apparently, towards the end of the experimental period, microorganisms in the low-N treatment used C from soil organic matter to a greater extent than C they used from root released material, presumably because lower amounts of mineral N were available to microorganisms in the low-N treatment. Immobilization of N appeared to be soil driven (organisms decomposing soil organic matter account for the N demand) at low-N and root-driven (organisms decomposing roots and root-derived C account for the N demand) at high-N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...