Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 264 (1986), S. 1072-1079 
    ISSN: 1435-1536
    Keywords: Detergency ; electro-osmosis ; iron (III) oxide ; electrokinetic phenomena ; heterocoagulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The detachment of submicron particles of iron (III) oxide from a quartz plate in aqueous solutions was investigated by using a well-defined flow of electro-osmosis in comparison with the ordinary flow of water without electrokinetic effect. A rectangular quartz cell was used for removal experiments. Zeta potentials of the particles and the plate were determined by electrophoresis and electro-osmosis, respectively. When the iron (III) oxide particles adhering to the quartz plate were removed by the electro-osmotic flow or the ordinary (Poiseuille) flow, the removal efficiency increased with increasing hydrodynamic force. The removal efficiency by electro-osmotic flow was almost the same as that by ordinary flow under the condition of the same magnitude of applied hydrodynamic force. The values of volume flow rate for the removal efficiency of 0.5 for the electro-osmotic flow was extremely small compared with that for the ordinary flow, showing the effectiveness of particle removal by electrokinetic effect of electro-osmosis. The kinetic analysis of the particle removal process showed that it was characterized by two different rate constants, the rate constant of the rapid process and that of the slow process. The rate constant of slow process increased with increasing electro-osmotic velocity. This shows that the electro-osmotic flow acts as a mechanical force to overcome the energy barrier in the removal process. The rate constant increased with increasing surfactant concentration and this trend became more noticeable as electro-osmotic velocity increased. It is concluded from this result that the effect of surfactant on particle removal is enhanced by the mechanical force in removal processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 267 (1989), S. 434-439 
    ISSN: 1435-1536
    Keywords: Nylon particle ; adhesion ; removal ; electrokinetic potential ; Hamaker constant ; heterocoagulation ; electrostatic ; van der Waals interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effect of surface properties of particles on their adhesion and removal was investigated using an immersed system consisting of nylon particles and a quartz plate. The nylon particles were dyed with a reactive dye in order to change their properties and were used for the adhesion and removal experiments in comparison with undyed particles. The electrokinetic potentials of the particles were measured by micro-electrophoresis and the Hamaker constants were independently evaluated using experimental values of dispersive component of surface free energy determined by the Wilhelmy technique. The experimental results were used for the discussion of particle adhesion and removal on the basis of the heterocoagulation theory. The differences in adhesion and removal efficiencies between dyed and undyed particles were explained in terms of the electrostatic and dispersive van der Waals interaction by considering the differences in thier properties, the electrokinetic potential and the Hamaker constant, due to dyeing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...