Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 48 (1997), S. 243-262 
    ISSN: 1573-4889
    Keywords: cobalt-yttrium ; alloys ; high temperature ; sulfidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion of pure Co and Y and of a Co-15 wt.% Y alloy in H2-H2S mixtures providing a sulfur pressure of 10−8 atm. at 600–800°C and also of 10−7 atm. at 800°C was was studied to examine the effect of yttrium on the sulfidation resistance of pure cobalt. The alloy was nearly single phase, containing mostly the intermetallic compound Co17Y2 plus a small amount of cobalt solid-solution. For all conditions except for 800°C under 10−8 atm. S2, the alloy formed multilayered scales consisting of an outer region of pure cobalt sulfide, an intermediate region of a mixture of cobalt sulfide with yttrium oxysulfide and finally an innermost layer of a mixture of yttrium oxysu fide with cobalt metal. At 800°C under 10−8 atm. S2, below the dissociation pressure of cobalt sulfide, the alloy formed only a single layer composed of a mixture of metallic cobalt with yttrium oxysulfide. Pure yttrium produced only the oxysulfide Y2O2S, as a result of the large stability of this compound and of the presence of some impurities in the gas mixtures used. The corrosion kinetics were generally rather complex, but except at 800°C under 10−8 atm. S2, the addition of yttrium reduced the sulfidation rate of cobalt, even though the formation of a continuous protective external layer of a pure yttrium compound was never achieved. Finally, when the gas-phase sulfur pressure was above the dissociation of cobalt sulfide the corrosion rate of yttrium was significantly lower than that of Co-15 Y. The internal sulfidation of Y in Co-15 Y was not associated with depletion of Y in the alloy. This difusionless kind of internal attack is typical of binary A-B alloys presenting a very small solubility of the most-reactive component B in the base metal A, which restricts severely the flux of B from the alloy toward the alloy-scale interface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 47 (1997), S. 21-52 
    ISSN: 1573-4889
    Keywords: copper ; silver ; high temperature ; oxidation ; two-phase alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion of three two phase Cu-Ag alloys containing 25, 50, and 75 wt% Ag has been studied at 650 and 750°C. In all cases the alloys formed external scales of copper oxides. At the same time, an internal precipitation of Cu2O within a silver matrix was also produced, with an oxide volume fraction larger for the alloys richer in Cu. Beneath this mixed layer a region of single-phase solid solution of Cu in silver formed for Cu-50Ag and especially for Cu-75Ag. Silver metal remained in the metal-consumption zone, acting essentially as an inert marker, except for a few particles with were incorporated into the growing scales. Both pure Cu and the alloys corroded parabolically, but the rate constants for the alloys decreased with increased Ag content under constant temperature. The various aspects of the corrosion of these alloys are examined by taking into account the possible effects associated with the presence of two metal phases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...