Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0417
    Keywords: sediment facies ; sediment geochemistry ; sedimentation ; cores ; tephra stratigraphy ; hydrothermal activity ; paleolimnology ; New Zealand
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Lake Rotoiti in Taupo Volcanic Zone was formed by damming of the drainage system through the floor of Okataina Caldera. Basin sediments are predominantly silt or sand, with mineralogy consistent with derivation from local silicic rocks and airfall tephras. Sandy lithofacies around the shoreline are wave worked deposits. Sand and gravel lithofacies in deeper water and on steep slopes are largely relict or airfall tephras, or both. Profundal sediments are diatomaceous silts. Organic-rich diatomaceous silts also accumulate in near-shore wave-damped zones under weed beds. Short cores penetrated the Tarawera (1886 AD) and Kaharoa (1180 AD) Tephras, identified by their stratigraphic position, geochemistry and mineralogy. Localised slumping is evidenced from secondary tephras interbedded and redeposited within the basin silts. Sedimentation rates in the basins, estimated from the age of bounding tephras, are 0.9 to 4.0 mm y-1, and are highest under the influence of inflowing water from adjacent Lake Rotorua. For several hundred years prior to the Tarawera eruption sediment accumulation rates and the sediment geochemistry remained unchanged; deposition was predominantly biogenic opaline silica with a small terrestrial component. The Tarawera eruption deposited a terrestrial-silica, aluminum-rich primary tephra across the lake, which was followed by reworked tephra from within the catchment, the effects of which were progressively diluted by biogenic opaline silica as conditions stabilised. While the major effects of the eruption have been rapidly absorbed the lake has not returned to pre-eruption background conditions. A new equilibrium has been attained in which Tarawera Tephra continues to be eroded into the lake and is the principal source for a doubling of sedimentation rates following the eruption. High arsenic levels in some diatomaceous silts are attributed to episodic venting of hydrothermal fluids or gases into the water column.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Keywords: volcanology ; hotspot ; Pacific ; Macdonald ; petrology ; Austral Islands
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The southeastern extension of the Austral Islands volcanic chain terminates near 29°S, 140°W at the active Macdonald Seamount. The ‘hotspot’ region near Macdonald consists of at least five other volcanic edifices each more than 500 m high, included in an area about 50–100 km in diameter. On the basis of the sea-floor topography, the southeastern limit of the hotspot area is located about 20 km east of the base of Macdonald, where it is defined by the 3950 m isobath. At the edge of the hotspot area, there is a marked deepening of the seafloor from c.3900 m down to 4000–4300 m. The deeper sea-floor is faulted and heavily sedimented. The Macdonald volcano itself stands 3760 m above the surrounding seafloor, and has a basal diameter of 45 km. Its summit in January 1987 was 39 m below sea level, and it seems likely that Macdonald will emerge at the surface in the near future. Recent (March and November 1986) phreatic explosions on Macdonald Seamount erupted fragments of ultramafic and mafic plutonic blocks together with basic lapilli (volcaniclastic sand). The plutonic blocks have been variably altered and metamorphosed, and in some cases show signs of mineralisation (disseminated sulphides). The blocks presumably come from deeper levels in the volcanic system. The volcanics so far dredged from Macdonald consist of olivine and clinopyroxene cumulus-enriched basalts, evolved basalts, and mugearite. On the basis of incompatible element variations, simple crystal fractionation seems to be controlling the chemical evolution of Macdonald magmas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...