Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8838
    Keywords: ball milling ; chlorate electrolysis ; electrocatalysis ; hydrogen evolution ; nanocrystalline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Electrodes made from nanocrystalline Ti:Ru:Fe (2−y:1+y/2:1+y/2), with y varying from 0 to 1 by step of 0.25, and Ti:Ru:Fe:O (2:1:1:w), with w varying from 0 to 2 by step of 0.5, were prepared and tested as activated cathodes for the hydrogen evolution reaction in typical chlorate electrolysis conditions. These electrodes were subjected to an accelerated aging test, consisting of a succession of cycles of hydrogen discharge (HER) and open-circuit (OCP) conditions. In addition to monitoring the cathodic overpotential value during the aging test, visual inspection and mass loss measurements were performed on the electrodes at the end of the test to assess their stability. In the case of Ti:Ru:Fe (2:1:1), a large increase of the cathodic overpotential value is observed after 20 cycles. Adding O to the formulation causes a remarkable improvement of the long-term stability of the electrodes. As little as [O] = 10 at.% in nanocrystalline Ti:Ru:Fe:O (2:1:1:w) materials is sufficient for the electrode to show absolutely no sign of degradation after 50 cycles of HER/OCP, the longest accelerated test conducted. Adding more O to the formulation of the material does not lead to further stability improvement. A better stability under the conditions of the accelerated aging test can also be observed for nanocrystalline Ti:Ru:Fe (2−y:1+y/2:1+y/2) materials with y 〉 0. In that case however, the level of improvement is dependent on the value of y. The best results are obtained for y = 0.75. A hypothesis is proposed to explain the improved stability obtained by lowering the Ti content and/or by adding O. The similarity and difference between both ways of improving the stability of the nanocrystalline Ti:Ru:Fe materials are also discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied electrochemistry 29 (1999), S. 627-635 
    ISSN: 1572-8838
    Keywords: ball-milling ; electrocatalyst ; hydrogen evolution ; leaching ; lixiviation ; nanocrystalline alloys ; sodium chlorate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Ball-milled nanocrystalline Ti3RuFe powders were mixed with 1, 2, 4, 10 and 20 equivalents of Al and the mixtures were milled again for 20 h. The amount of Al atoms dissolved into the B2 structure of Ti3RuFe does not exceed 8–9 at %, the remaining being present as elemental Al into the powder mixture. During a subsequent treatment of the composite powder in alkaline solutions, the elemental Al is leached out, while Al solutes in the B2 structure are not affected. An examination of the surface by scanning electron microscopy reveals that the leached powder has a highly porous surface structure. Surface area measurements performed by BET measurements show that there is a tenfold increase in the effective surface area. Activated electrodes made from these porous materials show a significant decrease of the cathodic overpotential for hydrogen evolution in typical chlorate electrolysis conditions of about 80 mV.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-8838
    Keywords: ball-milling ; electrocatalyst ; hydrogen evolution ; nanocrystalline alloy ; sodium chlorate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Notes: Abstract Ti2RuFe and Ti2RuFeO2 nanocrystalline alloys were prepared by high energy ball-milling and used as cathodes for the hydrogen evolution reaction (HER) in the process of sodium chlorate synthesis. Ti2RuFe is almost single phase with the B2 structure. In contrast, Ti2RuFeO2 is made of a mixture of Ti2RuFe and TiOx phases. Tests in chlorate electrolysis conditions did not show any sign of degradation of Ti2RuFeO2 over a 300 h period, while Ti2RuFe breaks down after less than 100 h. The degradation of Ti2RuFe occurs because of hydrogen absorption and desorption during alternating hydrogen discharge and open-circuit conditions. Various hypotheses to explain the increase stability of the O containing alloy are considered.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...