Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 30 (1992), S. 959-969 
    ISSN: 0887-6266
    Keywords: composites of silicone elastomer and glass blends, interfacial quality and sorption of gas in ; sorption of gas in glass bead filled silicone elastomer, interfacial quality and dilation ; interfacial quality and gas sorption in silicone elastomer composites ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: In elastomers the crosslink density, the presence of filler particles, and the volumetric confinement toward sorptive dilation can influence the extent of gas mass uptake. In this study the effects of filler particles on the high-pressure gas mass sorption and the volumetric dilation of a silicone elastomer matrix has been investigated. Glass beads, ca. 30 μm radii, with different surface treatments were incorporated as inclusions in various specimens at relatively low concentrations of ca. 10% by volume. The high-pressure gases used were N2 and CO2 up to a maximum ambient pressure of ca. 25 MPa at ca. 20°C and 42°C, respectively. The gas mass sorption was determined by a vibrating reed technique. The sorptive dilation was measured by an ultrasonic transducer operating as a displacement probe. In certain systems the absorbed CO2 gas was able to disrupt the internal interfaces. This led to an increased gas mass uptake in the corrupted specimen. The N2 gas did not affect the interfacial bonds. The amount of penetrant uptake was found generally to be reduced when the internal interfaces were not disrupted. The presence of various internal interfaces restrained the sorptive dilation of the elastomeric matrix. These hindrances to the natural sorptive dilation of the elastomer network suppressed the extent of the gas sorption process. This effect has also been investigated separately in detail using model ‘poker chip’ type of specimens of various aspect ratios. The sorptive dilational characteristics have been correlated with the mechanical properties of similar specimens. The influence of an almost complete volumetric confinement on the gas sorption capacity of the silicone elastomer specimen has also been studied. © 1992 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...