Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Applied Organometallic Chemistry 9 (1995), S. 683-691 
    ISSN: 0268-2605
    Keywords: mercury ; methylmercury ; glutathione ; mercaptoethanol ; thiols ; EDTA ; complexation ; starfish ; translocation ; invertebrates ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Mature starfish Leptasterias polaris, collected in the St Lawrence Estuary (eastern Canada), were exposed to two mercury species (HgCI2 and CH3HgCI) via injections into the coelomic fluid. In vivo effects of some complexing agents (glutathione, mercaptoethanol and EDTA) on the distribution of 203Hg-labelled species in starfish organs and tissues and their possible role in mercury transport through membranes were studied over a 24 h period. The excretion of ammonia and mercury was also measured. When injected alone, inorganic mercury and methylmercury [CH3Hg(II)] were distributed in all organs, with a preferential adsorption in gonads, pyloric caeca and stomach. Mercury excretion was very low under all conditions studied. Mercaptoethanol, a small thiol ligand, was very efficient in reducing both mercury species in the coelomic fluid and seems to have promoted translocation towards most organs of the starfish. Its action is attributed to the formation of small and neutral complexes, HgL2 and CH3HgL, which can diffuse through membranes preserving their integrity. Glutathione increased the translocation of CH3Hg(II) towards surrounding organs, but had no apparent effect on inorganic mercury. EDTA promoted the transport of inorganic mercury only. These results highlight (1) the particular interest of starfish to workers studying in vivo chemical complexation of mercury species, and (2) the potential role of complexing molecules in the biotransport of mercury species through living membranes.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...