Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (2)
  • isothiocyanate  (2)
  • Analytical Chemistry and Spectroscopy  (1)
Material
Years
Keywords
  • 1
    ISSN: 1572-8927
    Keywords: Hydrogen-1 ; carbon-13 ; nitrogen-15 ; NMR ; lutetium(III) ; isothiocyanate ; complexation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A direct, low-temperature hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of lutetium(III)-isothiocyanate complex formation in aqueous solvent mixtures has been completed. At −100°C to −120°C in water-acetone-Freon mixtures, ligand exchange is slowed sufficiently to permit the observation of separate1H,13C, and15N NMR signals for coordinated and free water and isothiocyanate ions. In the13C and15N spectra of NCS−, resonance signals for five complexes are observed over the range of concentrations studied. The13C chemical shifts of complexed NCS− varied from −0.5 ppm to −3 ppm from that of free anion. For the same complexes, the15N chemical shifts from free anion were about −11 ppm to −15 ppm. The magnitude and sign of the15N chemical shifts identified the nitrogen atom as the binding site in NCS−. The concentration dependence of the13C and15N signal areas, and estimates of the fraction of anion bound at each NCS−:Lu3+ mole ratio, were consistent with the formation of [(H2O)5Lu(NCS)]2+ through [(H2O)Lu(NCS)5]2−. Although proton and/or ligand exchange and the resulting bulk-coordinated signal overlap prevented accurate hydration number measurements, a good qualitative correlation of the water1H NMR spectral results with those of13C and15N was possible.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 6 (1995), S. 541-546 
    ISSN: 1042-7147
    Keywords: immunoassay ; sensitized latexes ; aggregation kinetics and mechanism ; antibody-antigen reactions ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The paper describes a study of the kinetics and mechanism of the coagulation of two types of immunoassays using sensitized latexes. The positive response to the first test is based on the aggregation of the gamma globulin (IgG)-coated polystyrene latexes in the presence of IgM rheumatoid antigen. The second test is relative to the heteroaggregation of two types of sensitized latexes induced by the presence of human chorionic gonadotropin (HCG). In the latter test, two identical polystyrene latexes bearing carboxylic acid surface groups were sensitized by covalent coupling of monoclonal antibodies specific for the αHCG determinant on one type of latex and for the βHCG determinant on the other type. Using the Coulter Counter method, the aggregate size distribution c(n) was determined as a function of the number n of elementary constituents, thus enabling calculation of the number N(t) and weight S(t) average sizes of the aggregates. The temporal variations of the average sizes were compared with typical situtions of reaction-limited aggregation processes in order to characterize the mechanism of aggregation induced by antibody-antigen reactions.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0749-1581
    Keywords: NMR ; 1H NMR ; 13C NMR ; 15N NMR ; 27Al NMR ; isothiocyanate ; complexes ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A multinuclear magnetic resonance (NMR) study of the complexes of aluminum(III) with isothiocyanate ion in water-acetone mixtures has been completed. At temperatures low enough to slow proton and ligand exchange, separate resonance signals are observed for coordinated and bulk H2O (1H) and NCS- (13C, 15N), and Al3+ (27Al) in each complex. The 1H NMR spectra reveal six sets of signals for the complexes, [Al(H2O)6]3+ through [Al(H2O)(NCS)5]2-, including isomers for three of the species. Signal area measurements show a decrease in the Al3+ hydration number with increasing NCS- concentration, as this anion replaces water in the solvation shell. In the 27Al NMR spectra of these systems, signals for seven complexes, [Al(H2O)6]3+ through [Al(NCS)6]3-, are observed, with chemical shifts increasing by about 6 ppm with each additional NCS-. Although broadened somewhat by the Al(III) quadrupole, the 13C and 15N NMR spectra also reveal coordinated NCS- signals for these complexes, including 27Al—N13CS J-coupling in [Al(NCS)6]3-. Area evaluations of the 15N NMR signals provide an excellent complement to the 1H hydration number data. These NMR results demonstrate that a multinuclear approach to the study of solution complexes can provide detailed structural information about the species being formed.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...