Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 20 (1999), S. 93-116 
    ISSN: 1573-0840
    Keywords: self-organized criticality ; fractals ; cellular-automata models ; earthquakes ; landslides ; forest fires
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract The concept of self-organizedcriticality evolved from studies of three simplecellular-automata models: the sand-pile, slider-block,and forest-fire models. In each case, there is asteady “input” and the “loss” is associated with afractal (power-law) distribution of “avalanches.” Each of the three models can be associated with animportant natural hazard: the sand-pile model withlandslides, the slider-block model with earthquakes,and the forest-fire model with forest fires. We showthat each of the three natural hazards havefrequency-size statistics that are well approximatedby power-law distributions. The model behaviorsuggests that the recurrence interval for a severeevent can be estimated by extrapolating the observedfrequency-size distribution of small and mediumevents. For example, the recurrence interval for amagnitude seven earthquake can be obtained directlyfrom the observed frequency of occurrence of magnitudefour earthquakes. This concept leads to thedefinition of a seismic intensity factor. Both globaland regional maps of this seismic intensity factor aregiven. In addition, the behavior of the modelssuggests that the risk of occurrence of large eventscan be substantially reduced if small events areencouraged. For example, if small forest fires areallowed to burn, the risk of a large forest fire issubstantially reduced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...