Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 62 (1993), S. 85-93 
    ISSN: 1436-4646
    Keywords: Bigℳ ; affine scaling algorithm ; linear program ; interior point algorithm ; infeasibility ; global convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract When we apply the affine scaling algorithm to a linear program, we usually construct an artificial linear program having an interior feasible solution from which the algorithm starts. The artificial linear program involves a positive number called the bigℳ. Theoretically, there exists anℳ * such that the original problem to be solved is equivalent to the artificial linear program ifℳ 〉ℳ *. Practically, however, such anℳ * is unknown and a safe estimate ofℳ is often too large. This paper proposes a method of updatingℳ to a suitable value during the iteration of the affine scaling algorithm. Asℳ becomes large, the method gives information on infeasibility of the original problem or its dual.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 361-375 
    ISSN: 1436-4646
    Keywords: Interior point algorithm ; big ℳ ; linear program ; convex program ; complementarity problem ; potential reduction algorithm ; self-dual linear program
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract When we apply interior point algorithms to various problems including linear programs, convex quadratic programs, convex programs and complementarity problems, we often embed an original problem to be solved in an artificial problem having a known interior feasible solution from which we start the algorithm. The artificial problem involves a constantℳ (or constants) which we need to choose large enough to ensure the equivalence between the artificial problem and the original problem. Theoretically, we can always assign a positive number of the order O(2 L ) toℳ in linear cases, whereL denotes the input size of the problem. Practically, however, such a large number is impossible to implement on computers. If we choose too largeℳ, we may have numerical instability and/or computational inefficiency, while the artificial problem withℳ not large enough will never lead to any solution of the original problem. To solve this difficulty, this paper presents “a little theorem of the bigℳ”, which will enable us to find whetherℳ is not large enough, and to updateℳ during the iterations of the algorithm even if we start with a smallerℳ. Applications of the theorem are given to a polynomial-time potential reduction algorithm for positive semi-definite linear complementarity problems, and to an artificial self-dual linear program which has a close relation with the primal—dual interior point algorithm using Lustig's limiting feasible direction vector.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 61 (1993), S. 263-280 
    ISSN: 1436-4646
    Keywords: Infeasible-interior-point algorithm ; interior-point algorithm ; primal—dual algorithm ; linear program ; large step ; global convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract As in many primal—dual interior-point algorithms, a primal—dual infeasible-interior-point algorithm chooses a new point along the Newton direction towards a point on the central trajectory, but it does not confine the iterates within the feasible region. This paper proposes a step length rule with which the algorithm takes large distinct step lengths in the primal and dual spaces and enjoys the global convergence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 1-21 
    ISSN: 1436-4646
    Keywords: Primal—dual interior point algorithm ; linear program ; large step ; global convergence ; polynomial-time convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper proposes two sets of rules, Rule G and Rule P, for controlling step lengths in a generic primal—dual interior point method for solving the linear programming problem in standard form and its dual. Theoretically, Rule G ensures the global convergence, while Rule P, which is a special case of Rule G, ensures the O(nL) iteration polynomial-time computational complexity. Both rules depend only on the lengths of the steps from the current iterates in the primal and dual spaces to the respective boundaries of the primal and dual feasible regions. They rely neither on neighborhoods of the central trajectory nor on potential function. These rules allow large steps without performing any line search. Rule G is especially flexible enough for implementation in practically efficient primal—dual interior point algorithms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...