Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0197-8462
    Keywords: microwaves ; glaucoma drugs ; primates ; corneal endothelium ; iris ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Previous studies in our laboratory have established that pulsed microwaves at 2.45 GHz and 10 mW/cm2 are associated with production of corneal endothelial lesions and with disruption of the blood-aqueous barrier in the non-human primate eye. In the study reported here we examined ocular damage in monkeys (M. mulatta and M. fascicularis) following topical treatment with one of two ophthalmic drugs (timolol maleate and pilocarpine) that preceded exposure to pulsed microwaves. Anesthetized monkeys were sham exposed or exposed to pulsed, 2.45 GHz microwaves (10 μs, 100 pps) at average power densities of 0.2, 1, 5, 10, or 15 mW/cm2 4 h a day for 3 consecutive days (respective SARs were 0.052, 0.26, 1.3, 2.6, and 3.9 W/kg). Immediately before microwave exposure, one or both eyes were treated topically with one drop of 0.5% timolol maleate or of 2% pilocarpine. Following administration of a drug, we observed a significant reduction in the power-density threshold (from 10 to 1 mW/cm2) for induction of corneal endothelial lesions and for increased vascular permeability of the iris. Diagnostic procedures (in vivo specular microscopy and fluorescein iris angiography) were performed following each exposure protocol. In addition, increased vascular permeability was confirmed with horseradish peroxidase tracer techniques. Although we did not measure intraocular temperatures in experimental animals, the results suggest that a mechanism other than significant heating of the eye is involved. Our data indicate that pulsed microwaves at an average SAR of 0.26 W/kg, if administered after pretreatment with ophthalmic drugs, can produce significant ocular effects in the anesthetized primate. 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 131-146 
    ISSN: 0197-8462
    Keywords: microwaves ; cell membrane ; order ; melanin ; oxygen radicals ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The treatment of a B16 melanoma cell line with 2.45-GHz pulsed microwaves (10 mW/cm2, 10-μs pulses at 100 pps, 1-h exposure; SAR, 0.2 W/kg) resulted in changes of membrane ordering as measured by EPR (electron paramagnetic resonance) reporter techniques. The changes reflected a shift from a more fluid-like phase to a more solid (ordered) state of the cell membrane. Exposure of artificially prepared liposomes that were reconstituted with melanin produced similar results. In contrast, neither B16 melanoma cells treated with 5-Bromo-2-Deoxyuridine (3 μg/day × 7 days) to render them amelanotic, nor liposomes prepared without melanin, exhibited the microwave-facilitated increase of ordering. Inhibition of the ordering was achieved by the use of superoxide dismutase (SOD), which strongly implicates oxygen radicals as a cause of the membrane changes. The data indicate that a significant, specific alteration of cell-membrane ordering followed microwave exposure. This alteration was unique to melanotic membranes and was due, at least in part, to the generation of oxygen radicals. © 1992 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...