Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 8 (1987), S. 681-694 
    ISSN: 1572-9567
    Keywords: critical constants ; deuterium oxide ; heavy water ; isotope effect ; saturation vapor pressure ; tritium oxide ; water
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Reliable data on the vapor pressure and critical constants of H2O isotopes and their isotopic mixtures are required for the generation of thermophysical properties data over a wide range of temperatures and pressures. In this study, vapor pressure equations for D2O and T2O have been developed based on the latest experimental and theoretical information. Considering the similarity among H2O isotopes, the functional form of the Saul and Wagner equation, fully proven for H2O, has been employed. The present equation for D2O shows a lower trend by up to 0.09% than the widely used Hill and MacMillan equation at temperatures below 150°C. For the vapor pressure of the isotopic mixtures, the available experimental data have been examined for the validity of Raoult's law. Then it has been shown that the critical temperature and the critical pressure of the isotopic mixture can also be predicted as simple mole-fraction average values.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of thermophysics 13 (1992), S. 211-221 
    ISSN: 1572-9567
    Keywords: corresponding states ; high temperatures ; mixing rule ; shock-tube method ; thermal conductivity ; xenon-helium mixtures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The thermal conductivity of gases at high temperatures has been measured by the shock-tube method, which is uniquely suited to measure thermal conductivities of gases at high temperatures above 2000 K. A consistent set of thermal-conductivity data over a wide range of temperatures has been obtained from optimum combinations of shock-tube experiments at high temperatures, previously published data at lower temperatures, and a theoretical correlation of the temperature dependence. In the present study, the thermal conductivity of xenon-helium mixtures has been determined at compositions of 10 and 30 mol% xenon over the temperature range from 300 to 4800 K. Even though there is a large difference between the thermal conductivity of pure xenon and that of helium, it is interesting that the dependences of the thermal conductivity of the mixture on temperature and composition are linear. The experimental results are in good agreement with the predicted values based on the corresponding-states principle and the mixing rule. From these experimental results, interpolating the corresponding-states correlation data, we represent the equation of xenon-helium gas mixtures for thermal conductivity in terms of temperature and composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...