Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • molluscan nervous system  (1)
  • monoamines  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Cellular and molecular neurobiology 15 (1995), S. 371-386 
    ISSN: 1573-6830
    Schlagwort(e): mollusk ; monoamines ; catabolites ; γ-glutamyl amine ; HPLC/ED
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary 1. Although monoamines are well-known to play important roles in molluscan physiology, we are far from fully understanding the synthetic and degradative pathways of these substances, particularly in commercially important bivalve species. In the present study endogenous catecholamines, indoleamines, and their possible precursors and metabolites were detected in the scallop,Placopecten magellanicus, by high-performance liquid chromatography coupled to electrochemical detection. 2. Chromatographic analysis of CNS (cerebral, pedal, and parietovisceral combined), gill, gonad, kidney, mantle, liver, heart, fast adductor muscle, and foot disclosed the presence of the catecholamines 3,4-dihydroxyphenylalanine, dopamine, norepinephrine, and epinephrine and their metabolites normetanephrine, metanephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid. 3. Dopamine was detected most frequently and most consistently among all catecholamines. The concentrations of dopamine (1400 pg/mg wet weight) and its major metabolite 3,4-dihydroxyphenylacetic acid (300 pg/mg wet weight) were highest in the CNS. Following the CNS, dopamine was also abundant in other tissues such as heart, foot, and gill. The concentration of norepinephrine (1000 pg/mg wet weight) was highest in the CNS followed by the heart (700 pg/mg wet weight) and gill (600 pg/mg wet weight). 4. The indoleamine, 5-hydroxytryptamine, was present in considerable amounts in all tissues, but its content was highest in the foot (2700 pg/mg wet weight) followed by the CNS (1150 pg/mg wet weight) and gonad (1000 pg/mg wet weight). The precursor 5-hydroxytryptophan was also abundant in the foot followed by the gonad, CNS, and heart. 5. The oxidative metabolite 5-hydroxy-3-indole acetic acid was detected in the largest amount in CNS (200 pg/mg wet weight), whereasN-acetyl-5-hydroxytryptamine was detected in trace amounts in CNS, gonad and foot. This study also presents evidence for γ-glutamyl dopamine and γ-glutamyl 5-hydroxytryptamine as the possible alternate catabolic products of dopamine and 5-hydroxytryptamine, respectively, as previously described in gastropods. 6. Thus, the detection of monoamines and their precursors and metabolites in scallop strongly suggests the presence of mammalian-type enzymic action of hydroxylation, oxidation, and methylation pathways leading to synthesis and degradation of detected compounds. Furthermore, this is the first study to disclose the evidence of nonconventional metabolic pathways for dopamine (γ-glutamyl dopamine ⇐ dopamine ⇒ dihydroxyphenylacetic acid ⇒ homovanillic acid) and 5-hydroxytryptamine (γ-glutamyl 5-hydroxytryptamine ⇐ 5-hydroxytryptamine ⇒ 5-hydroxy-3-indoleacetic acid) inactivation in a bivalve species.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1439-1104
    Schlagwort(e): Lymnaea stagnalis ; feeding motor output ; molluscan nervous system ; neuropeptide ; APGWamide
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract A bilaterally symmetrical pair of cerebrobuccal neurons inLymnaea stagnalis shows immunoreactivity for the molluscan neuropeptide APGWamide. The neuron somata are whitish in colour and located on the ventral surface of each cetebral ganglion between the roots of the labial nerves. A single axon travels via the ipsilateral cerebrobuccal connective into the buccal ganglia, where it gives rise to fine neuritic branching. Based upon these characteristics, the neuron has been named the cerebrobuccal white cell (CBWC). In isolated CNS preparations, in the absence of feeding motor output, the CBWC is silent and receives few, low amplitude, synaptic inputs. During generation of fictive feeding, the CBWC bursts in phase with cycles of feeding motor output. Tonic or phasic stimulation of CBWC leads to initiation of rhythmic feeding motor output. However, evoked bursts of activity in CBWC, which mimic its normal burst pattern, cannot entrain the buccal rhythm, suggesting that CBWC is not itself a major component of the feeding central pattern generator (CPG). Strong stimulation of CBWC during ongoing feeding motor output leads to a reduction in frequency and/or intensity of the buccal rhythm. Bath application of synthetic APGWamide (10−2 M −10−4 m) to the isolated CNS can activate feeding motor output in quiescent preparations after a delay, but disrupts ongoing buccal rhythms. This study represents the first description of a peptidergic cerebrobuccal neuron in the well described gastropod feeding system and also provides new information about the role of a novel molluscan neuropeptide.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...