Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (3)
  • 1965-1969
  • monomolecular reaction  (2)
  • Brassica Sar1-like cDNAs  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 57 (1999), S. 209-215 
    ISSN: 1572-879X
    Keywords: 1-butene ; skeletal isomerization ; mesoporous material ; acid site concentration ; monomolecular reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract On the skeletal isomerization of 1-butene, mesoporous materials with mesopores too large to expect any shape selectivity have been used in order to investigate the effects of the concentration of acid sites on the conversion of 1-butene and the selectivity for isobutene. The concentrations of acid sites can be varied through the control of the Si/Al ratio. The conversion of 1-butene increases with increasing the aluminium content of mesoporous materials, while the selectivity for isobutene decreases. The results of ammonia TPD, IR measurement of 1-butene adsorption, and TG analysis of used catalysts indicate that distant location of activated 1-butene molecules induces the monomolecular reaction over the mesoporous materials with low aluminium content, resulting in high selectivity for skeletal isomerization. On the mesoporous material with high aluminium content, however, the high concentration of activated 1-butene molecules accelerates the multimolecular oligomerization and, thus, reduces the selectivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: 1-butene ; skeletal isomerization ; fluorine-modified alumina ; acid site concentration ; monomolecular reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract γ-alumina catalysts modified with different weight loadings of fluorine have been used for skeletal isomerization of 1-butene in order to investigate the effects of the fluorine loading level on the conversion of 1-butene and the selectivity to isobutene formation. Increasing the actual loading of fluorine up to 0.012 wt% led to an increase in conversion of 1-butene over fluorine-modified γ-alumina catalysts, while the high selectivity to isobutene remains almost unchanged. On the other hand, a clear trend of increasing 1-butene conversion with a decreasing selectivity to isobutene is observed for the γ-alumina catalysts with higher loadings of fluorine. An analysis of the results from the thermal analysis, NH3 temperature-programmed desorption, infrared and the 1-butene sorption measurments clearly indicates that the number of strong acid sites in the modified γ-alumina catalysts is greatly enhanced at fluorine loadings higher than 0.012 wt%, leading to the acceleration of 1-butene oligomerization followed by cracking to light hydrocarbons. Therefore, the 1-butene isomerization selectivity from fluorine-modified γ-alumina catalysts can be understood in terms of a competition between the monomolecular and bimolecular reaction pathways, which highly depend on the concentration of strong acid sites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Brassica Sar1-like cDNAs ; small GTP-binding protein ; suppression ; yeast Sec12-1 mutant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two new members (Bsar1a and Bsar1b) of the Sar1 gene family have been identified from a flower bud cDNA library of Brassica campestris and their functional characteristics were analyzed. The two clones differ from each other at 14 positions of the 193 amino acid residues deduced from their coding region. The amino acid sequences of Bsar1a and Bsar1b are most closely related to the Sar1 family, genes that function early in the process of vesicle budding from the endoplasmic reticulum (ER). The sequences contain all the conserved motifs of the Ras superfamily (G1–G4 motifs) as well as the distinctive structural feature near the C-terminus that is Sar1 specific. Our phylogenetic analysis confirmed that these two clones can indeed be considered members of the Sar1 family and that they have a close relationship to the ARF family. The Bsar1 proteins, expressed in Escherichia coli, cross-reacted with a polyclonal antibody prepared against Saccharomyces cerevisiae Sar1 protein. It also exhibited GTP-binding activity. Genomic Southern blot analysis, using the 3'-gene-specific regions of the Bsar1 cDNAs as probes, revealed that the two cDNA clones are members of a B. campestris Sar1 family that consists of 2 to 3 genes. RNA blot analysis, using the same gene-specific probes, showed that both genes are expressed with similar patterns in most tissues of the plant, including leaf, stem, root, and flower buds. Furthermore, when we placed the two Bsar1 genes under the control of the yeast pGK1 promoter into the temperature-sensitive mutant yeast strain S. cerevisiae Sec12-1, they suppressed the mutation which consists of a defect in vesicle transport. The amino acid sequence similarity, the GTP-binding activity, and the functional suppression of the yeast mutation suggest that the Bsar1 proteins are functional homologues of the Sar1 protein in S. cerevisiae and that they may perform similar biological functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...