Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 2193-2206 
    ISSN: 0887-624X
    Keywords: multicomponent ; latex ; interpenetrating polymer networks ; IPN ; core/shell ; morphology ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A series of novel structured latex particles with interpenetrating polymer network (IPN) cores and glassy SAN shells were developed in an attempt to investigate the feasibility of these polymers as both toughening and damping agents in thermoplastics. The IPN cores were composed of one impact part (polybutadiene based) and one damping part (acrylic based, with Tg around +10°C). The particle morphologies of these polymers were determined by TEM. The glass transitions and mechanical behavior of the polymers were characterized from DMS. The effect of different components on the final core/shell particle morphologies and mechanical properties was studied. The mechanical behavior of core/shell particles with IPN cores was also compared with that of separate core/shell and multilayered core/shell particles. In addition, normal core/shell synthesis (rubbery part first then the glassy part) and inverted core/shell synthesis (glassy part first then the rubbery part) were performed to provide another access for morphology control. It was found that the core/shell latex particles with poly(butyl acrylate) based copolymers are more miscible than poly(ethylhexyl methacrylate)-based copolymers. The high grafting efficiency of poly(butyl acrylate) plays an important role in governing phase miscibility. The latex particles synthesized by the inverted core/shell mode showed higher miscibility than the normal synthesized ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2193-2206, 1997
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...