Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 20 (1995), S. 1081-1106 
    ISSN: 0271-2091
    Keywords: multiple scale decomposition ; correction function ; multi-resolution analysis ; reproducing kernel function ; wavelet ; mesh- (or grid-) free particle methods ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A new continuous reproducing kernel interpolation function which explores the attractive features of the flexible time-frequency and space-wave number localization of a window function is developed. This method is motivated by the theory of wavelets and also has the desirable attributes of the recently proposed smooth particle hydrodynamics (SPH) methods, moving least squares methods (MLSM), diffuse element methods (DEM) and element-free Galerkin methods (EFGM). The proposed method maintains the advantages of the free Lagrange or SPH methods; however, because of the addition of a correction function, it gives much more accurate results. Therefore it is called the reproducing kernel particle method (RKPM). In computer implementation RKPM is shown to be more efficient than DEM and EFGM. Moreover, if the window function is C∞, the solution and its derivatives are also C∞ in the entire domain. Theoretical analysis and numerical experiments on the 1D diffusion equation reveal the stability conditions and the effect of the dilation parameter on the unusually high convergence rates of the proposed method. Two-dimensional examples of advection-diffusion equations and compressible Euler equations are also presented together with 2D multiple-scale decompositions.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...