Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 25 (1997), S. 513-522 
    ISSN: 0271-2091
    Keywords: compact ; multivariant ; compressed row storage ; univariant ; multifrontal ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Our work is an extension of the previously proposed multivariant element. We assign this refined element as a compact mixed-order element in the sense that use of this element offers a much smaller bandwidth. The analysis is implemented on quadratic hexahedral elements with a view to analysing a three-dimensional incompressible viscous flow problem using a method formulated within the mixed finite element context. The idea of constructing such a stable element is to bring the marker-and-cell (MAC) grid lay-out to the finite element context. This multivariant element can thus be classified as a discontinuous pressure element. We have several reasons for advocating the proposed multivariant element. The primary advantage gained is its ability to reduce the bandwidth of the matrix equation, as compared with its univariant counterparts, so that it can be effectively stored in a compressed row storage (CRS) format. The resulting matrix equation can be solved efficiently by a multifrontal solver owing to its reduced bandwidth. The coding is, however, complicated by the appearance of restricted degrees of freedom at mid-face nodes. Through analytic study this compact multivariant element has a marked advantage over the multivariant element of Gupta et al. in that both bandwidth and computation time have been drastically reduced. © 1997 John Wiley & Sons, Ltd.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...