Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1573-515X
    Schlagwort(e): chemical characterization ; chemodynamics ; conifer ecosystem ; humus genesis ; maturation ; pattern recognition ; plant constituents ; pyrolysis-mass spectrometry ; senescence
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Geologie und Paläontologie
    Notizen: Abstract Spruce needles of different age, litter materials and soil samples from the L-, O-and A-horizons of a mor profile were analysed by temperature-programmed pyrolysis (Py) in combination with field ionization mass spectrometry (FIMS). The integrated Py-FI mass spectra give characteristic fingerprints of the biomaterials investigated. The application of principal component analysis to the mass spectral data results in a clear discrimination and classification of the samples reflecting the chemical modifications and transformations of organic matter by biochemical and biogeochemical processes. The chemical compositions are determined by processes such as enrichment and/or translocation of plant constituents (e.g. carbohydrates, lignin, lipids, suberin, and aliphatic polymers) during maturation and senescence of needles; amendment of new components; decomposition; selective preservation and humification processes in the soil environment. During needle maturation, major chemical changes include the decrease of carbohydrate content, condensation of lignin, and crosslinking of waxes. Senescent needles are characterized by lower contents of carbohydrates and lower yields of monomeric pyrolysis products from lignin. The contribution of different litter materials to the humus layer can be estimated by differences in chemical composition. During litter decomposition and humification on the forest floor, carbohydrate content decreases rapidly. The lignin content remains almost constant but some subunits are continuously oxidized. Wax material accumulates until the mechnical disintegration of the needle occurs. In the O-horizons polymeric aliphatic materials are enriched in humified plant remains. A constant increase of aryl-alkyl esters from suberin in the O-horizons is due to both root input and selective preservation. In general, mainly aliphatic polymers and aryl-alkyl esters accumulate during the genesis of mor profiles under conifers.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Plant and soil 160 (1994), S. 225-235 
    ISSN: 1573-5036
    Schlagwort(e): fertilization ; field experiment ; organic carbon ; particle-size fractions ; pyrolysis-mass spectrometry ; seasonal variations ; soil organic matter
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Seasonal variations of soil organic matter (SOM) were studied in the unfertilized plot (U) and in the NPK+farmyard manure plot (NPK+FYM) of the 88-year-old ‘Static Experiment’ at Bad Lauchstädt (Germany). Decreases in the C concentrations by 0.24% (U) and 0.43% (NPK+FYM) between June and August were observed which were significant at the p 〈 0.01 level. The largest differences in N concentrations were 0.035% (U: August vs. September) and 0.029% (NPK+FYM: April vs. May). The C/N ratios were lowest in July and August (∼12). The seasonal variations of SOM contents were reflected in significant differences in the C concentrations of organo-mineral particle-size fractions. The proportions of soil C, associated with clay increased from 56% and 38% in April to 69% and 48% in October in the untreated and NPK+FYM-treated plot, respectively. Pyrolysis-field ionization mass spectra of whole soil samples taken in June and August showed larger differences in the molecular composition of SOM in the untreated plot than in the NPK+FYM plot. On the basis of thermograms for six important compound classes of SOM, seasonal variations in (a) their amounts and (b) their incorporation in thermally different stable humic and/or organo-mineral bonds were visualized. Within four weeks of a net mineralization of SOM, portions of phenols, lignin monomers, lignin dimers, alkylaromatics, lipids, N-containing compounds and carbohydrates reached a higher thermal stability, which can be explained by advanced crosslinking. These results represent the first application of this novel methodology to the subtle and difficult problem of seasonal SOM variations.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...