Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1435-1536
    Keywords: Key words Gelatin ; crosslinking ; drawing ; oriented films ; dynamic mechanical properties ; glass transition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract  This second part of a systematic study of the properties of crosslinked-oriented gelatin involves the effects of orientation and water content on the glass transition temperature T g and on the melting behavior. The samples were the same as those in the preceding study, and their transition temperatures were determined by both differential scanning calorimetry and dynamic mechanical thermal analysis. The crosslinked gelatin which had been room-conditioned showed two transition temperatures: the lower one was attributed to T g of the water-plasticized gelatin, and the higher one was interpreted as T g of dried gelatin superimposed by melting. A rather unusual situation arose because of the fact that the T g and melting temperatures T m (217 and 230 °C, respectively) are so similar. Using water as plasticizer not only decreases T g but produces imperfect crystallites which melt below the T g of the system. The presence of the amorphous phase in the glassy state would presumably make it essentially impossible to define a melting point or crystallization temperature in the normal manner, as an equilibrium between crystalline and amorphous phases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1536
    Keywords: Gelatin ; crosslinking ; drawing ; oriented films ; dymeanie mechanical properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This study is an extension of previous work on cellulosics [(1994)Colloid Polym Sci 272: 284, 393] that showed that unusually good mechanical properties can be obtained by drying a swollen network of semirigid chains in a state of strain. This novel approach is applied in this investigation to gelatin, because of its attractive environmental characteristics but poor mechanical properties in the unmodified form. Since drawing of non-crosslinked gelatin is not practical, crosslinking by formaldehyde was used, followed by swelling, drawing and drying at fixed length. Mechanical tests were performed in static and dynamic modes. In this way improvements of Young's modulusE, and stress at breakσ b were determined as a function of gelatin concentration during drying. An increase inE andσ b up to 2–3 times, and in the dynamic modulusE′ up to 6 times, was obtained when the draw ratio λ reached 4–5, after whichE, E′, andσ b were found to decrease. Such behavior is explained by the highest orientation being achieved at λ=4–5, as proved by x-ray analysis. At λ=10–20 the orientation is lost due to relaxation of chain segments, which is preceded by partial destroying of the network structure (chemical and physical), possibly via chain scission, but probably mostly by the pulling out of chains from crystallites. In any case, the mechanical properties become poor again. The improvements reported above were referred to the undrawn but crosslinked gelatin. Compared to the starting isotropic non-crosslinked material, the improvement is slightly higher. The observation that the improvements are less than those obtained for the cellulosics is explained by the coexistence of interpenetrating chemical and physical networks, which is typical of gelatin. This structural feature drastically reduces the orientability of the chains and the improvements that can be expected in the mechanical properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-1536
    Keywords: Cellulose acetate ; hydroxypropylcellulose ; cross-linking ; liquid-crystalline state ; anisotropic state ; novel orientation technique ; oriented films ; mechanical properties ; maximum extensibility ; tensile modulus ; tensile strength ; birefringence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The networks of cellulose acetate and hydroxypropylcellulose prepared in the first part of this investigation were studied with regard to their mechanical properties. The quantities of particular interest were increases in tensile modulus and tensile strength obtained by drying the swollen films under strain, both uniaxial and equi-biaxial. These increases or improvements in mechanical properties were determined as a function of polymer concentration during cross-linking, polymer molecular weight, degree of cross-linking, and elongation during drying. In all cases, the improvements increased with increase in elongation during drying, and the largest increases were obtained in the case of the highest molecular weight polymer which had been lightly cross-linked in dilute (isotropic) solutions. The extent of ordering in these systems was gauged approximately by measurements of birefringence, which were correlated with their tensile moduli and tensile strengths.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...