Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 127-128 (1993), S. 19-30 
    ISSN: 1573-4919
    Keywords: phosphorylase kinase ; calmodulin ; calmodulin-binding peptides ; Ca2+-binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Holophosphorylase kinase was digested with Glu-C specific protease; from the peptide mixture calmodulin binding peptides were isolated by affinity chromatography and identified by N-terminal sequence analysis. Two peptides originating from the α subunit, having a high tendency to form a positively charged amphiphilic helix and containing tryptophane, were synthesized. Additionally, a homologous region of the β subunit and a peptide from the α subunit present in a region deleted in the α′ isoform were also selected for synthesis. Binding stoichiometry and affinity were determined by following the enhancement in tryptophane fluorescence occurring upon 1:1 complex formation between these peptides and calmodulin. Finally, Ca2+ binding to calmodulin in presence of peptides was measured. By this way, the peptides α 542–566, α 547–571, α 660–677 and β 597–614 have been found to bind specifically to calmodulin. Together with previously predicted and synthesized calmodulin binding peptides four calmodulin binding regions have been characterized on each the α and β subunits. It can be concluded that endogenous calmodulin can bind to two calmodulin binding regions in γ as well as to two regions in α and β. Exogenous calmodulin can bind to two regions in α and in β. A binding stoichiometry of 0.8mol of calmodulin/αβγδ protomer of phosphorylase kinase has been determined by inhibiting the ubiquitination of calmodulin with phosphorylase kinase. Phosphorylase kinase is half maximally activated by 23nM calmodulin which is in the affinity range of calmodulin binding peptides from β to calmodulin. Therefore, binding of exogenous calmodulin to β activates the enzyme. A model for switching endogenous calmodulin between α, β and γ and modulation of ATP binding to α as well as Mg2+/ADP binding to β by calmodulin is presented.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biochemical genetics 18 (1980), S. 247-261 
    ISSN: 1573-4927
    Keywords: phosphorylase kinase ; mice ; X-linked deficiency ; dominant inheritance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A new mouse strain, the V strain, with a partial deficiency of phosphorylase kinase has been established. The deficiency is caused by an X-linked dominant gene (Phk c ). Muscle extracts of homozygous and heterozygous females and hemizygous males have about 25% of the activity found in extracts of normal (C3H/HeHan) mice. This dominant phosphorylase kinase deficiency of the new V strain is different from that of the I-strain mice with the X-linked recessive deficiency of skeletal muscle phosphorylase kinase. The muscle extracts of V-strain and normal mice contain the same phosphorylase phosphatase activity of about 1 U/mg. Heart and liver extracts from V mice contained about 50% and 66%, respectively, of the phosphorylase kinase activity compared to that found in the same organs from the normal mice. The glycogen content of the skeletal muscle of the V strain was normal, i.e., 0.9 mg/g. Phosphorylase kinase was purified from the skeletal muscle of the V strain by (a) hydrophobic chromatography on methylamine Sepharose, (b) ammonium sulfate precipitation, and (c) gel filtration of Sepharose 4B. The enzyme has a similar structure to the normal murine and rabbit skeletal muscle enzyme, except that the proportion of the subunits differs. The molar ratio of the subunits of the V strain mice is (α+α′):β:γ=0.54:1:1.169, in comparison with that of the rabbit (α+α′):β:γ=1.1:1.0:1.0 and that of normal murine enzyme 0.9:1.0:0.7.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...