Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6830
    Keywords: pineal gland ; thyroxine type II 5′-deiodinase ; N-acetyltransferase ; light exposure at night ; β-adrenergic receptor agonists ; α-adrenergic receptor agonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Compared to pinealN-acetyl transferase (NAT) activity, which exhibited a dramatic drop following acute light exposure at night, nocturnal rat pineal thyroxine type II 5′-deiodinase (5′-D) activity was minimally influenced by the same light exposure. The injection of cycloheximide, a potent inhibitor of protein synthesis, although it did curtail the rise in NAT activity for at least 2 hr, did not elicit decreases in the activities of either 5′-D or NAT enzymes. Propranolol, aβ-adrenergic blocker, either delayed the continued nocturnal rise in 5′-D activity when injected at 0000 hr or slightly enhanced the fall in 5′-D activity when injected at 0200 hr. These results suggest that interruption of the synthesis of proteins is responsible for the slow deterioration of 5′-D activity induced by either light or propranolol. 2. The slight fall in 5′-D activity induced by light at night was prevented by isoproterenol; phenylephrine, however, did not prevent the fall and the effect of isoproterenol + phenylephrine was similar to that obtained with isoproterenol alone. On the other hand, the light-inhibited NAT activity recovered after the injection of isoproterenol; phenylephrine did not elicit any effect, but the injection of both isoproterenol and phenylephrine simultaneously caused a greater NAT response than that induced by isoproterenol alone. 3. When injected during the day, phenylephrine had no effect on either pineal 5′-D or NAT activities; however, the injection of either isoproterenol alone or isoproterenol + phenylephrine elicited 5-fold and 10-fold increases in nocturnal, light-suppressed 5′-D and NAT activities, respectively. During the day, phenylephrine did not potentiate the effects of isoproterenol on NAT activity as it did at night. When the effects of isoproterenol on the 5′-D activity were compared to rats exposed to light during the day and at night, the activity of 5′-D reached a higher level at night than during the day.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 65 (1997), S. 430-442 
    ISSN: 0730-2312
    Keywords: melatonin ; pineal gland ; cerebellum ; nitric oxide ; nitric oxide synthase ; calmodulin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Constitutive rat cerebellar nitric oxide synthase (NOS) activity is shown to be inhibited by physiological concentrations of the pineal hormone melatonin. The inhibition was dose-dependent and was coupled to an inhibition of the cyclic GMP production activated by L-arginine. Results also show that calmodulin appears to be involved in this process because its presence in the incubation medium was able to prevent the effect of melatonin on both NOS activity and cyclic GMP production. Moreover, polyacrylamide gel electrophoresis studies suggest that melatonin can interact with calmodulin modifying the binding of the peptide to the synthetic NOS peptide encompassing the calmodulin-binding domain of constitutive NOS from rat cerebellum, the natural mechanism by which calmodulin activates cerebellar NOS. J. Cell. Biochem. 65:430-442. © 1997 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...