Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 165 (1994), S. 207-212 
    ISSN: 1573-5036
    Keywords: cycloheximide ; ferric reduction ; p-fluorophenylalanine ; plasmalemma redox systems ; Plantago lanceolata ; plant iron nutrition ; protein synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Roots of Plantago lanceolata L. showed an iron stress-induced increase in the rates of electron transport to the extracytoplasmatic acceptors FeEDTA and ferricyanide. No significant changes in the reduction of hexachloroiridate were observed with respect to the iron-nutritional status of the plants. The reduction activity of iron-deficient roots was inhibited by the translation inhibitor cycloheximide (CHM) and the amino acid analog p-fluorophenylalanine (FPA). In both cases, the reduction of FeEDTA and ferricyanide was affected to a different extent, providing evidence for enzyme heterogeneity. Resupply of FeEDTA to iron-deficient plants resulted in a qualitatively similar pattern of decrease in FeEDTA and ferricyanide reduction rates, although a longer time period was required for the decrease of the redox activity by iron resupply compared to the effect of inhibitors of protein synthesis. Inhibitors of the plasma membrane (PM)-bound H+-ATPase decreased the FeEDTA reduction activity of iron-deficient plants. In contrast, the reduction of ferricyanide and hexachloroiridate was not inhibited. Oxidation of ferrocyanide occurs in both iron-deficient and iron-sufficient plants at comparable rates. The reaction was decreased by the H+-ATPase inhibitor orthovanadate. The results are interpreted in terms of a simultaneous action of distinct redox systems in iron-deficient roots. The role of proton extrusion in the regulation of iron stress-induced electron transport is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...