Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Local soil effects  (1)
  • point source  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Pure and applied geophysics 143 (1994), S. 513-536 
    ISSN: 1420-9136
    Schlagwort(e): Local soil effects ; wave propagation ; numerical modelling ; seismic zonation ; seismic ground motion
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract Many of the numerical techniques used for seismic zonation studies treat one-dimensional structural models and/or the incidence of plane polarized body waves. These techniques are often not adequate for laterally heterogeneous structures and for sources that are not located beneath the site of interest. In such cases a more rigorous treatment of the combined effects of the source, the path and the site response is needed. This can be accomplished with a hybrid approach combining modal summation and the finite-difference technique. To demonstrate the differences between these techniques, the ground motion in the city of Benevento (Italy) is modelled. We first compare the results obtained with one-and two-dimensional structural models for vertical incidence of plane polarized body waves. These results are then compared with those obtained with the hybrid approach for two-dimensional structural models. The comparisons have allowed us to find important differences in the response obtained with the different modelling techniques. For the same site, these differences consist of strong variations in amplitude and in the shape of the spectral amplifications. For a seismic source which is not located beneath the site, vertical incidence of waves significantly overestimates the local hazard in a laterally homogeneous structure. For a laterally heterogeneous area, we can conclude that one-dimensional modelling fails to estimate the seismic hazard, whereas for a seismic source which is not located beneath the site of interest, two-dimensional modelling with vertical incidence of plane polarized body waves may not allow reliable estimates to be made of the frequency bands at which amplifications occur. The results obtained for two-dimensional structural models are used for a zonation of the city of Benevento.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of seismology 1 (1997), S. 205-218 
    ISSN: 1573-157X
    Schlagwort(e): moment tensor ; waveform inversion ; modal summation ; explosions ; monitoring ; lateral heterogeneity ; point source ; source time function
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract The design of a monitoring system for detecting explosions is a very topical problem, both for routine data processing at seismological observatories as well as for the monitoring of a Comprehensive Test Ban Treaty. In this framework it is desirable to have the possibility to quantify the presence of the isotropic component in the seismic source. For this purpose a method is presented, which is based on waveform inversion for the full moment tensor retrieval. The method inverts either full waveforms or separate seismic phases and returns the mechanism and time history of a point source. Moreover, it allows to redefine the hypocentral depth of the event and, in a simplistic way, to optimize the structural model as well. In order to model strong laterally heterogeneous structures, different pairs of structural models can be used for each source-receiver path. The source is decomposed into a volumetric part (V), representing an explosive or implosive component, and into a deviatoric part, containing both the double couple (DC) and the compensated linear vector dipole (CLVD) components. The method is applied to an area in central Switzerland and to the network of the Swiss Seismological Service. The events of interest include both earthquakes and explosions. Despite some modelling inadequacies of the source-time function, the explosions can be well identified with the inverted isotropic component in the source, as long as the number of stations used for the inversion is larger than three. The results of the inversion are better for large epicenter-station distances of the order of 40–90 km.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...