Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 95 (1997), S. 165-178 
    ISSN: 1573-2932
    Keywords: bioremediation ; phytoremediation ; polycyclic aromatic hydrocarbons ; petroleum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Rhizosphere microbial populations may increase bioremediation of soil contaminated with organic chemicals. A growth chamber study was conducted to evaluate rhizosphere microbial populations in contaminated and non-contaminated soil. Alfalfa (Medicago sativa L.) and alpine bluegrass (Poa alpina L.) were grown in soil containing a mixture of organic chemicals for 14 weeks. The equal millimolar mixture of hexadecane, (2,2-dimethylpropyl)benzene, cis-decahydronaphthalene (decalin), benzoic acid, phenanthrene, and pyrene was added at levels of 0 and 2000 mg/kg. Organic chemical degrader (OCD) populations were assessed by a Most-Probable-Number technique, and bacteria and fungi were enumerated by plate count methods. Different methods for expressing OCD rhizosphere populations were investigated to determine the effect it had on interpretation of the results. At 9 weeks, the OCD numbers were significantly higher in rhizosphere and contaminated soils than in bulk and non-contaminated soils, respectively. Alfalfa rhizosphere OCD levels were 4 × 107/g for contaminated and 6 × 106/g for non-contaminated soils. Bluegrass rhizosphere OCD levels were 1 × 107/g and 1 × 106/g in contaminated and non-contaminated soils, respectively. Selective enrichment of OCD populations was observed in contaminated rhizosphere soil. Higher numbers of OCD in contaminated rhizospheres suggest potential stimulation of bioremediation around plant roots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 95 (1997), S. 165-178 
    ISSN: 1573-2932
    Keywords: bioremediation ; phytoremediation ; polycyclic aromatic hydrocarbons ; petroleum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Rhizosphere microbial populations may increase bioremediation of soil contaminated with organic chemicals. A growth chamber study was conducted to evaluate rhizosphere microbial populations in contaminated and non-contaminated soil. Alfalfa (Medicago sativa L.) and alpine bluegrass (Poa alpina L.) were grown in soil containing a mixture of organic chemicals for 14 weeks. The equal millimolar mixture of hexadecane, (2,2-dimethyl-propyl)-benzene, cis-decahydronaphthalene (decalin), benzoic acid, phenanthrene, and pyrene was added at levels of 0 and 2000 mg/kg. Organic chemical degrader (OCD) populations were assessed by a Most-Probable-Number technique, and bacteria and fungi were enumerated by plate count methods. Different methods for expressing OCD rhizosphere populations were investigated to determine the effect it had on interpretation of the results. At 9 weeks, the OCD numbers were significantly higher in rhizosphere and contaminated soils than in bulk and non-contaminated soils, respectively. Alfalfa rhizosphere OCD levels were 4 × 107/g for contaminated and 6 × 106/g for non-contaminated soils. Bluegrass rhizosphere OCD levels were 1 × 107/g and 1 × 106/g in contaminated and non-contaminated soils, respectively. Selective enrichment of OCD populations was observed in contaminated rhizosphere soil. Higher numbers of OCD in contaminated rhizospheres suggest potential stimulation of bioremediation around plant roots.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...