Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 0887-624X
    Schlagwort(e): phenothiazine ; fluorescence ; charge transfer complex ; photoinitiation ; C60 ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Four acrylic monomers bearing phenothiazine moieties, i.e., N-acrylyl-phenothiazine (APT), N-acrylyl-2-chlorophenothiazine (ACPT), N-acrylyl-2-acetylphenothiazine (AAPT), and 10-acrylyl-1-azaphenothiazine (AAzPT) were synthesized by dehydrohalogenation of the corresponding N-(β-chloropropionyl)-substituted phenothiazine derivatives with 1,8-diazabicyclo[5.4.0]undec-5-ene (DBU). These monomers could easily be polymerized by initiation with AIBN. The emission fluorescence spectra of the monomers and their polymers were recorded, which showed that the polymers displayed much stronger fluorescence than their corresponding monomers at the same chromophore concentrations. This phenomenon, as termed as “structural self-quenching effect,” was commonly observed for acrylic monomers bearing chromophore moieties and ascribed to the coexistence of the electron-donating chromophore and the electron-accepting double bond in the same molecule. Because of the formation of exciplex, the monomer APT, as well as ACPT, AAPT, AAzPT, and their polymers, could initiate the photopolymerization of AN. The charge transfer phenomenon between P(APT), P(ACPT), and C60 was also explored. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 1245-1250 
    ISSN: 0887-624X
    Schlagwort(e): N-(4-N′, N′-dimethylaminophenyl)maleimide ; fluoroescence structural self-quenching effect ; initiation ; polymerization ; Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: A maleimide bearing electron-donating chromophore, N-(4-N′,N′-dimethylaminophenyl)-maleimide (DMAPMI) was synthesized from N, N-dimethylaminoaniline and maleic anhydride in the presence of acetic anhydride and sodium acetate. DMAPMI can be easily copolymerized with vinyl acetate (VAc). In addition, it can be easily homopolymerized by UV light irradiation or by using AIBN or BPO as an initiator. The fluorescence spectra of DMAPMI and its polymer or copolymer were recorded and compared at the same chromophore concentrations. It was observed that the fluorescence emission intensity of DMAPMI was much lower than those of its polymers. This may be due to the occurrence of intermolecular charge transfer interaction between the electron-donating dimethylaminophenyl moiety and acrylic electron-accepting carbon-carbon double bond in the monomer. The model compound, N-(4-N′, N′-dimethylaminophenyl)succinimide (DMAPSI), which has no carbon-carbon double bond, displayed the same fluorescence behavior as DMAPMI polymers. The fluorescence of DMAPMI polymers and DMAPSI can be quenched by electron-deficient compounds such as AN, TCNE, MMA, etc. All these results supported the above conclusion. This is another example of the “fluorescence structural self-quenching effect” termed by us previously and demonstrates again that this phenomenon is not an accidental but a general one for acrylic monomers bearing electron-donating chromophores. Study of the initiation behavior of DMAPMI and its polymer showed that they could initiate the photopolymerization of AN, by combination with BPO, they could also initiate the thermopolymerization of vinyl monomers such as MMA. © 1996 John Wiley & Sons, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...