Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Apoptosis 1 (1996), S. 119-125 
    ISSN: 1573-675X
    Keywords: Mitochondrial transmembrane potential ; permeability transition ; programmed cell death ; reactive ; oxygen species
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The mitochondrial genome of animals encodes a few subcomponents of the respiratory chain complexes I, III and IV, whereas nuclear DNA encodes the overwhelming majority, both in quantitative and qualitative terms, of mitochondrial proteins. Complete depletion of mitochondrial DNA (mtDNA) can be achieved by culturing cells in the presence of inhibitors of mtDNA replication or mitochondrial protein synthesis, giving rise to mutant cells (ϱ∘ cells) which carry morphological near-to-intact mitochondria with respiratory defects. Such cells can be used to study the impact of mitochondrial respiration on apoptosis. ϱ∘ cells do not undergo cell death in response to determined stimuli, yet they conserve their potential to undergo full-blown apoptosis in many experimental systems. This indicates that mtDNA and associated functions (in particular mitochondrial respiration) are irrelevant to apoptosis execution. However, the finding that mtDNA-deficient mitochondria can undergo apoptosis does not argue against the involvement of mitochondria in the apoptotic process, since mitochondria from ϱ∘ cells conserve most of their functions including those involved in the execution of the death programme: permeability transition and release of one or several intermembrane proteins causing nuclear apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cell biology and toxicology 14 (1998), S. 141-145 
    ISSN: 1573-6822
    Keywords: mitochondrial transmembrane potential ; permeability transition ; programmed cell death ; proteases
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Apoptosis has classically been viewed as a process not involving mitochondria, whereas the implication of mitochondrial dysfunction in necrosis has been recognized for several decades. Recently, it has become clear that apoptosis implies a disruption of mitochondrial membrane intregrity that is decisive for the cell death process. Cytofluorometric methods assessing the mitochondrial membrane function and structure can be employed to demonstrate that, at least in most models of apoptosis, mitochondrial changes precede caspase and nuclease activation. Moreover, pharmacological and genetic experiments suggest that the loss of mitochondrial membrane integrity is a critical event of the apoptotic process, beyond or at the point of no return of programmed cell death. Inhibitors of the mitochondrial megachannel (= permeability transition pore) can prevent both the mitochondrial and the post-mitochondrial manifestations of apoptosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...