Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 23 (1995), S. 548-556 
    ISSN: 0887-3585
    Keywords: electron crystallography ; molecular interaction ; surface potential ; protein crystallization ; two-dimensional crystal ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Surface charges of protein molecules are not only important to biological functions but also crucial to the molecular assembly responsible for crystallization. Appropriate alteration in the surface charge distribution of a protein molecule induces new molecular alignment in the proper direction in the crystal and, hence, controls the crystal form. Apoferritin molecules are known to crystallize in two- and three-dimensional forms in the presence of cadmium ions, which bridge neighboring protein molecules. Here we report a controlled transformation of the apoferritin 2-D crystal by site-directed mutagenesis. In mutant apoferritin, two amino acid residues binding a cadmium-ion through their negative charge, were replaced by one type of nonionic amino acid residues. The amino acid residues, Asp-84 and Gln-86 in the sequence of recombinant (i.e., wild-type) horse L-apoferritin, were replaced by Ser. The wild-type apoferritin yielded a hexagonal lattice 2-D crystal in the presence of cadmium ions. In contrast, the mutant apoferritin yielded two types of oblique crystals independent of the presence of cadmium ions. Image reconstruction of electron micrographs of the mutant crystals made clear that the mutant apoferritin molecules oriented themselves with the 2-fold symmetry axis perpendicular to the crystal plane in both crystals, while the wild-type apoferritin molecules oriented themselves with the 3-fold symmetry axis perpendicular to the crystal plane. The changes of crystal forms and molecular orientation in the 2-D crystals were well explained by a change of the electrostatic interactions induced by the mutagenesis. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...