Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 42 (1997), S. 399-409 
    ISSN: 0006-3525
    Keywords: protein folding ; folding pathways ; folding intermediates ; computer simulation ; solvent effects ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Folding pathways and intermediates for a two-dimensional lattice protein have been investigated via computer simulation at various denaturant concentrations. The protein is represented as a chain of 8 hydrophobic (H) and 12 polar (P) beads on a square lattice sequenced in such a way that the native state is a compact hydrophobic core surrounded by a shell of polar beads. Two nonbonded H beads are said to attract each other with a potential of mean force of strength ε. Increasing |ε/kT| mimics decreasing the denaturant concentration in the solution. Dynamic Monte Carlo simulations have been performed in order to investigate the folding transition and the folding pathways. Sharp folding - unfolding transitions are observed and the folding process proceeds along well-defined pathways that are populated by partially folded intermediates. The folding pathways as well as the populations of the intermediates are strongly dependent upon the denaturant concentration. Generally, intermediates containing long open stretches of H beads are more populated at high denaturant concentration, whereas compact intermediates containing a substantial number of hydrophobic contacts are more populated at low denaturant concentrations. The folding process is also observed to be cooperative in nature in that the chain does not start folding until a key fold in the middle section of the chain is formed correctly. © 1997 John Wiley & Sons, Inc. Biopoly 42: 399-409, 1997
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...