Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 27 (1994), S. 199-206 
    ISSN: 1572-879X
    Keywords: pulse reaction ; NiO/Al2O3 catalysts ; methane activation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Pulse studies of the interaction of CH4 and NiO/Al2O3 catalysts at 500°C indicate that CH4 adsorption on reduced nickel sites is a key step for CH4 oxidative conversion. On an oxygen-rich surface, CH4 conversion is low and the selectivity of CO2 is higher than that of CO. With the consumption of surface oxygen, CO selectivity increases while the CO2 selectivity falls. The conversion of CH4 is small at 500°C when a pulse of CH4/O2 (CH4∶O2=2∶1) is introduced to the partially reduced catalyst, indicating that CH4 and O2 adsorption are competitive steps and the adsorption of O2 is more favorable than CH4 adsorption
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 41 (1996), S. 159-163 
    ISSN: 1572-879X
    Keywords: methane oxidation ; syngas ; SiO2-supported nickel (Ni/SiO2) ; deuterium isotope effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The reaction behaviors of CH4/O2 (2/1) with unreduced and reduced SiO2-supported nickel (10 wt% metal) catalysts were investigated in a pulse micro-reactor at temperatures ranging from 600 to 800° C. In the interaction of CH4/O2 with unreduced NiO/SiO2, the products are exclusively CO2 and H2O at or below 700°C. At 800° C, besides CO2 and H2O, CO and H2 are formed. The reactivity at 800°C can be ascribed to the net generation of metallic nickel site at this temperature. In the reaction of CH4/O2 over reduced Ni/SiO2, the main products are CO and H2 with CO2 and H2O being the minor ones. The results indicate metallic nickel is the active site for methane partial oxidation to syngas. Normal deuterium isotope effects of similar magnitude were observed on the overall, as well as on the CO and CO2 formation reactions with insignificant change in the product selectivities when CD4 was used instead of CH4, indicating that methane dissociation is a key step and that CO and CO2 are formed via some common intermediates which are subject to kinetic deuterium isotope effect. The results of deuterium isotope effects can be reasonably explained based on the methane pyrolysis mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...