Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Basic research in cardiology 88 (1993), S. 471-482 
    ISSN: 1435-1803
    Keywords: Calcium ; sodium ; sodium-calcium exchange ; reperfusion injury ; 2,3-butanedione monoxime
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary When oxygen-deprived cardiomyocytes become energy depleted, they accumulate Na+ and Ca2+ in the cytosol. Influx of Ca2+ via the Na+/Ca2+ exchange mechanism seems to contribute to the development of Ca2+ overload, but Ca2+ overload may eventually also occur when this route is blocked. Hypoxic-reoxygenated cardiomyocytes in a state of severe overload of Na+ and Ca2+ can rapidly re-establish a normal cation control when oxidative energy production is re-initiated. The recovery of cellular Ca2+ control may be devided into three stages: first, sequestration of large amounts of Ca2+ into the sarcoplasmic reticulum; second, oscillatory movement of Ca2+ from and back into the sarcoplasmic reticulum and gradual extrusion across the sarcolemma; third, re-establishment of constant low cytosolic Ca2+ concentrations. When the Na+/Ca2+ exchanger is inhibited, extrusion of Ca2+ from the cells' interior is impaired and oscillatory Ca2+ movements between cytosol and sarcoplasmic reticulum continue for long time. Thus, the functions of the sarcoplasmic reticulum and the Na+/Ca2+ exchanger are of crucial importance for the recovery of Ca2+ control in reoxygenated cardiomyocytes. In re-energized cardiomyocytes, a persistent elevation of the cytosolic Ca2+ concentration provokes maximal force development and consecutive mechanical cell injury (“oxygen paradox”). This injury can be prevented when the contractile machinery is inhibited during the initial phase of reoxygenation as long as necessary for the re-establishment of a normal cytosolic Ca2+ control.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Basic research in cardiology 91 (1996), S. 191-202 
    ISSN: 1435-1803
    Keywords: Acidosis ; calcium ; hypercontracture ; reperfusion injury ; Na+/HCO3 − ; symporter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In ischemia the cytosol of cardiomyocytes acidifies; this is reversed upon reperfusion. One of the major pHi-regulating transport systems involved is the Na+/H+ exchanger. Inhibitors of the Na+/H+ exchanger have been found to more effectively protect ischemic-reperfused myocardium when administered before and during ischemia than during reperfusion alone. It has been hypothesized that the protection provided by pre-ischemic administration is due to a reduction in Na+ and secondary Ca2+ influx. Under reperfusion conditions Na+/H+ exchange inhibition also seems protective since it prolongs intracellular acidosis which can prevent hypercontracture. In detail, however, the mechanisms by which Na+/H+ exchange inhibition provides protection in ischemic-reperfused myocardium are still not fully identified.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...